Please wait a minute...
img

官方微信

遥感技术与应用  2018, Vol. 33 Issue (5): 890-899    DOI: 10.11873/j.issn.1004-0323.2018.5.0890
模型与反演     
Sentinel-2A与Landsat-8影像在油菜识别中的差异性研究
韩涛,潘剑君,张培育,曹罗丹
(南京农业大学 资源与环境科学学院,江苏 南京 210005)
Study on Differences between Sentinel-2A and Landsat-8 Images in Rape Identification
Han Tao,Pan Jianjun,Zhang Peiyu,Cao Luodan
(College of Resources and Environment Sciences,Nanjing 210095,China)
 全文: PDF 
摘要:
油菜是中国最重要的农作物之一,准确、及时掌握高精度的油菜面积具有重要意义。与Landsat-8数据相比,新一代光学卫星Sentinel-2A数据具有众多优点,但是Sentinel-2A数据在农作物识别方面的应用效果是否一定优于Landsat-8数据仍然是个未知的问题。因此,以油菜最佳识别期内的Sentinel-2A和Landsat-8影像各一景为数据源,选取种植结构复杂的小尺度都市农业区为研究区,基于影像的光谱特征与植被指数信息利用不同分类方法提取油菜种植面积。通过比较不同分类条件、不同方法下的两种影像的油菜识别精度,结果表明:①Sentinel-2A影像中不同地物的光谱特征差异与植被指数可分离性高于Landsat\|8影像;②支持向量机(SVM)分类器下,Sentinel-2A数据的光谱特征获得的油菜制图精度与用户精度最高,分别为89.7%和91.3%,比同等条件下的Landsat\|8油菜识别精度分别高7.0%和6.2%;③加入纹理信息后,两种数据的总体精度和Kappa系数明显提高,但油菜的制图精度与用户精度并无明显提升。以上结果表明:与Landsat-8数据相比,Sentinel-2A数据能够在种植结构复杂的小尺度区域提取更高精度的作物分布信息。研究结果可以为Sentinel-2A数据的农作物识别与应用提供理论基础。
关键词: Sentinel-2ALandsat-8光谱特征植被指数小尺度油菜    
Abstract: Rape is one of the most important crops for many countries,so it is important to obtain accurate rape area.Compared with Landsat-8 data,Sentinel-2A has many advantages,but whether the results of Sentinel-2A data in crop identification are better than Landsat-8 is still an unknown question.The study site is located in a typical agricultural region:Gaochun District in Nanjing,the capital of Jiangsu Province,China,with central coordinates of 118°52′E and 31°19′N.One Sentinel-2A and one Landsat-8 image were obtained during the flowering stage of rape,and then rape area was extracted by using different classification methods based on spectral characteristics and vegetation indices.By comparing the identification accuracy of two images under different classification conditions and methods,the results show that:(1) The difference of spectral characteristics and separability of vegetation indices of different objects in Sentinel-2A were higher than those of Landsat-8 images;(2) Under the classifier of support vector machine,the Producer’s and User’s accuracy of rape of Sentinel-2A based on spectral characteristics were 89.7% and 91.3% respectively,which were 7.0% and 6.2% higher than the identification accuracy of Landsat-8 data;(3) After adding texture information,the overall accuracy and kappa coefficient of two kinds of data were significantly improved,but there was no increase in the producer’s and user’s accuracy of rape.The result presented in this paper show that compared with Landsat-8 data,Sentinel-2A data is more suitable for extracting crop distribution information in small areas with complex planting structure,which can lay a theoretical foundation for crop identification and application of Sentinel-2A data.
Key words: Sentinel-2A    Landsat-8    Spectral characteristic    Vegetation indices    Small scale    Rape
收稿日期: 2017-11-13 出版日期: 2019-03-01
ZTFLH:  S127  
基金资助: 江苏省高校优势学科建设工程资助项目(PAPD)。
作者简介: 韩涛(1995-),男,安徽池州人,硕士研究生,主要从事农业遥感应用方面的研究。Email:njauhantao@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
韩涛
潘剑君
张培育
曹罗丹

引用本文:

韩涛, 潘剑君, 张培育, 曹罗丹. Sentinel-2A与Landsat-8影像在油菜识别中的差异性研究[J]. 遥感技术与应用, 2018, 33(5): 890-899.

Han Tao, Pan Jianjun, Zhang Peiyu, Cao Luodan. Study on Differences between Sentinel-2A and Landsat-8 Images in Rape Identification. Remote Sensing Technology and Application, 2018, 33(5): 890-899.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2018.5.0890        http://www.rsta.ac.cn/CN/Y2018/V33/I5/890

[1] 高书鹏, 史正涛, 刘晓龙, 柏延臣. 基于高时空分辨率可见光遥感数据的热带山地橡胶林识别[J]. 遥感技术与应用, 2018, 33(6): 1122-1131.
[2] 高莎, 林峻, 马涛, 吴建国, 郑江华. 新疆巴音布鲁克草原马先蒿光谱特征提取与分析[J]. 遥感技术与应用, 2018, 33(5): 908-914.
[3] 孟梦,牛铮. 近30 a内蒙古NDVI演变特征及其对气候的响应[J]. 遥感技术与应用, 2018, 33(4): 676-685.
[4] 钟函笑,边金虎,李爱农. Landsat-8 OLI与Sentinel-2 MSI山区遥感影像辐射一致性研究[J]. 遥感技术与应用, 2018, 33(3): 428-438.
[5] 李珊珊,蒋耿明. 基于通用分裂窗算法和Landsat-8数据的地表温度反演研究[J]. 遥感技术与应用, 2018, 33(2): 284-295.
[6] 杨朦朦,汪汇兵,欧阳斯达,范奎奎,戚凯丽. 基于双树复小波分解的BP神经网络遥感影像分类[J]. 遥感技术与应用, 2018, 33(2): 313-320.
[7] 谢京凯,王福民,王飞龙,张东尼. 面向水稻LAI监测的植被指数土壤调节参数修正[J]. 遥感技术与应用, 2018, 33(2): 342-350.
[8] 曾毓燕,施润和,刘浦东,王弘. 利用植被指数估算叶绿素含量的模型模拟研究—以PROSPECT+DART模型为例[J]. 遥感技术与应用, 2017, 32(4): 667-673.
[9] 朱钟正,陈玉福,朱文泉,郑周涛. 适用于多目标遥感自动解译的最佳专题指数筛选[J]. 遥感技术与应用, 2017, 32(3): 564-574.
[10] 郝泷,陈永富,刘华,朱雪林,达哇扎西,李伟娜. 基于纹理信息CART决策树的林芝县森林植被面向对象分类[J]. 遥感技术与应用, 2017, 32(2): 386-394.
[11] 刘剑锋,张喜旺. 基于光谱和时相特征的夏玉米遥感识别[J]. 遥感技术与应用, 2016, 31(6): 1131-1139.
[12] 吴志杰,何国金,王猛猛,傅娇凤,邹丹. 南方丘陵区植被覆盖度遥感估算与时空变化研究—以福建省永定县为例[J]. 遥感技术与应用, 2016, 31(6): 1201-1208.
[13] 张婕,张文煜,冯建东,王宏义,于泽,宋玮. 基于亮温—植被指数—气溶胶光学厚度的MODIS火点监测算法研究[J]. 遥感技术与应用, 2016, 31(5): 886-892.
[14] 王守志,邢立新,仲波,杨爱霞,张福坤,梁敏. 基于Landsat-8 OLI和GF-1 PMS数据融合的铁染蚀变信息提取[J]. 遥感技术与应用, 2016, 31(5): 950-957.
[15] 马东辉,柯长青. 南京冬季典型植被光谱特征分析[J]. 遥感技术与应用, 2016, 31(4): 702-708.