Please wait a minute...
img

官方微信

遥感技术与应用  2018, Vol. 33 Issue (5): 942-955    DOI: 10.11873/j.issn.1004-0323.2018.5.0942
遥感应用     
基于ALOSPALSAR的喜马拉雅山冰川流速分布及变化
王仕哲,柯长青
(南京大学地理与海洋科学学院,江苏 南京 210023)
Distribution and Variation of Glacier Velocity in Himalayas based on ALOS PALSAR
Wang Shizhe,Ke Changqing
(School of Geographic and Oceanographic Sciences,NanJing University,Nanjing 210023,China)
 全文: PDF 
摘要:
基于2007年12月至2010年2月的12景ALOS PALSAR数据,结合SRTM,应用特征跟踪方法对喜马拉雅山冰川3个时段的流速进行了估算。结果表明,2007年冬季、2009年夏季和2009年冬季冰川流速均在0~300 m·a-1之间,冰川积累区仅在夏季有较明显的运动,而冰舌部分的运动在任何季节都较为明显,并且长冰舌冰川流速沿主流线向下缓慢减小,而短冰舌冰川沿主流线向下流速不断波动变化,甚至增加。4个坡向中,东坡冰川流速最大,东南坡和西南坡次之,北坡冰川流速最小,除了与气候因素相关外,还与地形因素密切相关,从4个坡向的坡度大小来看,北坡坡度最小,也是造成北坡冰川流速最小的主要原因之一。冰川存在年际变化,即冰川冬季平均流速有所增加,增加的冰川流速在-5~18 m·(2a)-1之间,并且面积大的冰川流速变化较小,面积小的冰川流速变化较大。同时冰川流速也存在季节性变化,夏季流速整体比冬季流速要大,冰川主流线上流速在夏季时波动较强烈,并且会出现多个峰值,而冬季主流线流速则较为平缓,但主流线上平均流速季节性差异并不明显。4条典型冰川流速年际变化、季节变化与研究区冰川总体特征相似,并且流速与气候特征和冰川形状之间都有密切的关系。冰川前进与退缩特征不明显,研究区冰川总体上处于平衡状态。
 
关键词: ALOSPALSAR冰川流速分布及变化特征跟踪喜马拉雅山    
Abstract: Based on the 12 scenes ALOS PALSAR data from December 2007 to February 2010,combined with SRTM,we estimated the glacier velocityof the Himalayasin three periods by feature tracking method.The results show that glacier velocity of the winter of 2007,the summer of 2009 and the winter of 2009 were between 0~300 m·a-1,and accumulation area of the glacier have obvious movement only in summer,butthe movement of the glacier tongue is obviousin any season.Long tongue glacier velocity decreasesslowlyalong the mainstream line,while the short tongue glacier velocity fluctuatesalong the mainstream line,and even increases.The glacier in east aspecthas the largest velocity.The glaciervelocity in southeast aspect and the southwest aspect are second,and glacier velocity is minimum in the north aspect.In addition to climatic factors,it also closely relates to terrain factors.In terms of the slope of the four aspects,the north aspecthas the smallest slope,andit is one of the main causes of the smallest glacier velocity in the north aspect.There is an inter-annual variation of glaciers,that is,mean velocity of glaciers increases in winter,and the increased velocities are between -5~18 m·(2a).The glacier with small areavaries greatly,and the glacier with large area varies little.Meanwhile,the glacier velocity also has seasonal variation.The overall velocity in summer is larger than that in winter.The velocity in mainstream line fluctuates strongly in summer,and there are many peaks,but velocity in winteris gentle.However,the seasonal variation of the mean velocity in mainstream line is not obvious.The inter-annual variation and seasonal variation of the four typical glacier velocities are similar to those of the glaciers in the study area.There is a close relationship between velocity and climate and the shape of the glacier.The characteristics of glacier advance and retreat are not obvious,and the glaciers in the study area are in equilibrium.
Key words: ALOS PALSAR    Glacier velocity distribution and variation    Featuretracking    Himalayas
收稿日期: 2017-11-26 出版日期: 2019-02-22
ZTFLH:  TP 79  
基金资助: 国家自然科学基金项目“青藏高原东南部冰川储量变化的多源遥感综合观测研究”(41830105)。

作者简介: 王仕哲(1992-),女,河南浚县人,硕士研究生,主要从事遥感及其应用研究。Email:861474790@qq.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王仕哲, 柯长青. 基于ALOSPALSAR的喜马拉雅山冰川流速分布及变化[J]. 遥感技术与应用, 2018, 33(5): 942-955.

Wang Shizhe, Ke Changqing. Distribution and Variation of Glacier Velocity in Himalayas based on ALOS PALSAR. Remote Sensing Technology and Application, 2018, 33(5): 942-955.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2018.5.0942        http://www.rsta.ac.cn/CN/Y2018/V33/I5/942

[1] 王广蕊, 李晓峰. 东北地区森林积雪的微波辐射亮温模拟分析[J]. 遥感技术与应用, 2018, 33(6): 1027-1029.
[2] 汪子豪, 秦其明, 孙元亨.

基于BP神经网络的地表温度空间降尺度方法 [J]. 遥感技术与应用, 2018, 33(5): 793-802.

[3] 王恺宁, 王修信, 黄凤荣, 罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[4] 石满, 陈健, 覃帮勇, 李盛阳. 天宫二号数据地表温度反演及其在城市群热环境监测中的应用[J]. 遥感技术与应用, 2018, 33(5): 811-819.
[5] 金点点, 宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[6] 苗翔鹰, 苗洪利, 张旭东, 黄霞凤, 王桂忠. 利用星下点干涉相位法提高三维成像高度计测高精度[J]. 遥感技术与应用, 2018, 33(5): 866-872.
[7] 谢旭, 陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[8] 高莎, 林峻, 马涛, 吴建国, 郑江华. 新疆巴音布鲁克草原马先蒿光谱特征提取与分析[J]. 遥感技术与应用, 2018, 33(5): 908-914.
[9] 冀新莹, 韦玉春, 王问尧, 方宏. 城镇区域高分辨率遥感影像地表覆盖变化检测的误差分析[J]. 遥感技术与应用, 2018, 33(5): 932-941.
[10] 王常颖, 田德政, 韩园峰, 隋毅, 初佳兰. 基于属性差决策树的全极化SAR影像海冰分类[J]. 遥感技术与应用, 2018, 33(5): 975-982.
[11] 程俊毅, 张显峰, 孙权, 郑晓岚. 沥青路面老化状况遥感监测与评估模型建立及应用[J]. 遥感技术与应用, 2018, 33(5): 956-964.
[12] 范锦龙,张晔萍,李昌宝,许文波,刘少杰,薛飞,覃志豪. 风云卫星中分辨率遥感数据几何定位误差分析[J]. 遥感技术与应用, 2018, 33(4): 621-627.
[13] 梁继,褚楠,郑敦勇,彭焕华,张静. 面向道路边坡监测的高分二号应用研究[J]. 遥感技术与应用, 2018, 33(4): 638-645.
[14] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[15] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.