閬ユ劅鎶�鏈笌搴旂敤 鈥衡�� 2019, Vol. 34 鈥衡�� Issue (1): 1-11.

鈥� 缁艰堪 鈥�    涓嬩竴绡�

鍩轰簬CNN鐨勯珮鍒嗛仴鎰熷奖鍍忔繁搴﹁涔夌壒寰佹彁鍙栫爺绌剁患杩�

钁h暣闆咃紝寮犲��   

  1. (鍗庝笢甯堣寖澶у璁$畻鏈虹瀛︿笌杞欢宸ョ▼瀛﹂櫌锛屼笂娴� 200333)
  • 鏀剁鏃ユ湡:2018-05-31 鍑虹増鏃ユ湡:2019-02-20 鍙戝竷鏃ユ湡:2019-04-02
  • 浣滆�呯畝浠�:钁h暣闆�(1993-)锛屽コ锛屾渤鍗楀珐涔変汉锛岀澹爺绌剁敓锛屼富瑕佷粠浜嬮仴鎰熷奖鍍忓鐞嗙爺绌躲�侲-mail锛歞ongyy@qq.com銆�
  • 鍩洪噾璧勫姪:

    鍥藉鑷劧绉戝鍩洪噾椤圭洰(41301472)锛屽湴鐞嗙┖闂翠俊鎭笌鏁板瓧鎶�鏈浗瀹舵祴缁樺湴鐞嗕俊鎭眬宸ョ▼鎶�鏈爺绌朵腑蹇冨紑鏀捐棰樺熀閲�(SIDT20171002)銆�

     

A Survey of Depth Semantic Feature Extraction of High-Resolution Remote Sensing Images based on CNN

Dong Yunya锛孼hang Qian   

  1. (School of Computer Science and Software Engineering锛孍ast China Normal University锛孲hanghai 200333锛孋hina)
  • Received:2018-05-31 Online:2019-02-20 Published:2019-04-02

鎽樿锛� 杩戝勾鏉ワ紝娣卞害瀛︿範浣滀负璁$畻鏈鸿瑙夌殑鐮旂┒鐑偣锛屽湪璇稿鏂归潰寰椾互鍙戝睍涓庡簲鐢ㄣ�傜壒寰佹彁鍙栨槸鐞嗚В鍜屽垎鏋愰珮鍒嗛仴鎰熷奖鍍忕殑鍏抽敭鍩虹銆備负淇冭繘楂樺垎閬ユ劅褰卞儚鐗瑰緛鎻愬彇鎶�鏈殑鍙戝睍锛屾�荤粨浜嗘繁搴﹀涔犳ā鍨嬪湪楂樺垎閬ユ劅褰卞儚鐗瑰緛鎻愬彇鎶�鏈殑鐮旂┒涓庡彂灞曪紝濡傦細AlexNet锛孷GG-缃戝拰GoogleNet绛夊嵎绉綉缁滄ā鍨嬪湪娣卞害璇箟鐗瑰緛鎻愬彇涓殑搴旂敤銆傛澶栵紝閲嶇偣鍒嗘瀽鍜岃璁轰簡浠ュ嵎绉缁忕綉缁滄ā鍨嬩负鍩虹鐨勫悇绫绘繁搴﹀涔犳ā鍨嬪湪楂樺垎閬ユ劅褰卞儚鐗瑰緛鎻愬彇鏂归潰鐨勫簲鐢ㄤ笌鍒涙柊锛屽锛氳縼绉诲涔犵殑搴旂敤锛涘嵎绉缁忕綉缁�(Convolutional Neural Network锛孋NN)妯″瀷缁撴瀯鐨勬敼鍙橈紱CNN妯″瀷涓庡叾浠栨ā鍨嬬粨鏋勭殑缁撳悎绛夋柟寮忥紝鍧囨彁鍗囦簡娣卞害璇箟鐗瑰緛鎻愬彇鑳藉姏銆傛渶鍚庯紝瀵瑰嵎绉缁忕綉缁滄ā鍨嬪湪楂樺垎閬ユ劅褰卞儚娣卞害璇箟鐗瑰緛鎻愬彇鏂归潰瀛樺湪鐨勯棶棰樹互鍙婂悗缁彲鑳界殑鐮旂┒瓒嬪娍杩涜浜嗗垎鏋愩��

鍏抽敭璇�: High-resolution remote sensing image, Depth semantic feature, Deep learning, Convolutional neural network

Abstract: In recent years锛宒eep learning has been developed and applied in many aspects as a research hotspot of computer vision.Feature extraction is the key basis for understanding and analyzing high-resolution remote sensing images.In order to promote the development of high-resolution remote sensing image feature extraction technology锛宼he research and development of deep learning model in high-resolution remote sensing image feature extraction technology锛宻uch as锛欰lexNet锛孷GG-net锛宎nd GoogleNet convolutional network models锛宧ave been summarized in depth semantic features.In addition锛宼he application of extraction is also focused on the application and innovation of various deep learning models based on convolutional neural network models in high-resolution remote sensing image feature extraction锛宻uch as锛歛pplication of migration learning锛汿he combination of the CNN model and other model structures enhances the ability to extract deep semantic features.Finally锛宼he problems of the convolutional neural network model in the extraction of deep semantic features of high-resolution remote sensing images and the possible research trends are analyzed.

Key words: 楂樺垎杈ㄧ巼閬ユ劅褰卞儚, 娣卞害璇箟鐗瑰緛, 娣卞害瀛︿範, 鍗风Н绁炵粡缃戠粶妯″瀷

涓浘鍒嗙被鍙�: