Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (1): 1-11    
综述     
基于CNN的高分遥感影像深度语义特征提取研究综述
董蕴雅,张倩
(华东师范大学计算机科学与软件工程学院,上海 200333)
A Survey of Depth Semantic Feature Extraction of High-Resolution Remote Sensing Images based on CNN
Dong Yunya,Zhang Qian
(School of Computer Science and Software Engineering,East China Normal University,Shanghai 200333,China)
 全文: PDF(4250 KB)  
摘要: 近年来,深度学习作为计算机视觉的研究热点,在诸多方面得以发展与应用。特征提取是理解和分析高分遥感影像的关键基础。为促进高分遥感影像特征提取技术的发展,总结了深度学习模型在高分遥感影像特征提取技术的研究与发展,如:AlexNet,VGG-网和GoogleNet等卷积网络模型在深度语义特征提取中的应用。此外,重点分析和讨论了以卷积神经网络模型为基础的各类深度学习模型在高分遥感影像特征提取方面的应用与创新,如:迁移学习的应用;卷积神经网络(Convolutional Neural Network,CNN)模型结构的改变;CNN模型与其他模型结构的结合等方式,均提升了深度语义特征提取能力。最后,对卷积神经网络模型在高分遥感影像深度语义特征提取方面存在的问题以及后续可能的研究趋势进行了分析。
关键词: High-resolution remote sensing imageDepth semantic featureDeep learningConvolutional neural network    
Abstract: In recent years,deep learning has been developed and applied in many aspects as a research hotspot of computer vision.Feature extraction is the key basis for understanding and analyzing high-resolution remote sensing images.In order to promote the development of high-resolution remote sensing image feature extraction technology,the research and development of deep learning model in high-resolution remote sensing image feature extraction technology,such as:AlexNet,VGG-net,and GoogleNet convolutional network models,have been summarized in depth semantic features.In addition,the application of extraction is also focused on the application and innovation of various deep learning models based on convolutional neural network models in high-resolution remote sensing image feature extraction,such as:application of migration learning;The combination of the CNN model and other model structures enhances the ability to extract deep semantic features.Finally,the problems of the convolutional neural network model in the extraction of deep semantic features of high-resolution remote sensing images and the possible research trends are analyzed.
Key words: 高分辨率遥感影像    深度语义特征    深度学习    卷积神经网络模型
收稿日期: 2018-05-31 出版日期: 2019-04-02
ZTFLH:  TP751  
基金资助:

国家自然科学基金项目(41301472),地理空间信息与数字技术国家测绘地理信息局工程技术研究中心开放课题基金(SIDT20171002)。

 

作者简介: 董蕴雅(1993-),女,河南巩义人,硕士研究生,主要从事遥感影像处理研究。E-mail:dongyy@qq.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

董蕴雅, 张倩. 基于CNN的高分遥感影像深度语义特征提取研究综述[J]. 遥感技术与应用, 2019, 34(1): 1-11.

Dong Yunya, Zhang Qian. A Survey of Depth Semantic Feature Extraction of High-Resolution Remote Sensing Images based on CNN . Remote Sensing Technology and Application, 2019, 34(1): 1-11.

链接本文:

http://www.rsta.ac.cn/CN/        http://www.rsta.ac.cn/CN/Y2019/V34/I1/1

[1] Xie Jiali,Li Yongshu,Li Hechao,et al.Method for Recognizing Damaged Buildings in Hollow Village Using the Texture Feature of Gray Level Co-occurrence Matrix[J].Bulletin of Surveying and Mapping,2017,12:90-93.[谢嘉丽,李永树,李何超,等.利用灰度共生矩阵纹理特征识别空心村损毁建筑物的方法[J].测绘通报,2017,12:90-93.[2]Jia Hongguo,Liu Luyao,Wei Bowen,et al.Automatic Extraction of Bridge Targets based on Shape and Texture Features for High Resolution SAR Imagery[J].Bulletin of Surveying and Mapping,2017,12:82-85.[贾洪果,刘路遥,韦博文,等.基于形状与纹理特征的高分辨率SAR影像桥梁目标自动提取方法[J].测绘通报,2017,12:82-85.]
[3] Yang Tao,Huang Farong,Li Qian.Spatiotemporal Changes of NDVI in the Growing Season of Northern Xinjiang and Its Relationship with Winter Snowfall[J].Remote Sensing Technology and Application.2017,32(6):1132-1140.[杨涛,黄法融,李倩.新疆北部植被生长季NDVI时空变化及其与冬季降雪的关系[J].遥感技术与应用,2017,32(6):1132-1140.]
[4] Hou Qunqun,Wang Fei,Yan Li.Texture Feature Extraction of Color Remote Sensing Images based on Gray Level Co-occurrence Matrix[J].Remote Sensing for Land and Resources,2013,25(4):26-32.[侯群群,王飞,严丽.基于灰度共生矩阵的彩色遥感图像纹理特征提取[J].国土资源遥感,2013,25(4):26-32.]
[5] Hu Hualong,Wu Bing,Huang Shaomei.Urban Road Extraction Method based on Gabor Texture and Geometric Features in High Resolution Remote Sensing Images[J].Journal of Surveying and Mapping Science and Technology,2015,32(4):395-400.[胡华龙,吴冰,黄邵美.结合Gabor纹理与几何特征的高分辨率遥感影像城区道路提取方法[J].测绘科学技术学报,2015,32(4):395-400.]
[6] Pesaresi M,Gerhardinger A,Kayitakire F.A Robust Built-up Area Presence Index by Anisotropic Rotation-invariant Textural Measure[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2009,1(3):180-192.
[7] Pesaresi M,Gerhardinger A.Improved Textural Built-up Presence[JP] Index for Automatic Recognition of Human Settlements in Arid Regions with Scattered Vegetation[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2011,4(1):16-26.
[8] Lowe D G.Object Recognition from Local Scale-Invariant Features[C]∥The Proceedings of the Seventh IEEE International Conference on Computer Vision,2002:1150.
[9] Huang X,Zhang L.A Multidirectional and Multiscale Morphological Index for Automatic Building Extraction from Multispectral GeoEye-1 Imagery[J].Photogrammetric Engineering and Remote Sensing,2015,77(7):721-732.
[10] Tian Feng,Chen Donghua,Huang Xinli,et al.Building Height Estimation based on Morphological Shadow Index and High Scores No.2 Image[J].Remote Sensing Technology and Application,2017,32(5):844-850.[田峰,陈冬花,黄新利,等.基于形态学阴影指数的高分二号影像建筑物高度估计[J].遥感技术与应用,2017,32(5):844-850.]
[11] Wang Ma.Cheng Bo,Liu Yueming.Research on the Extraction of High-resolution Remote Sensing Image based on Multi-source Feature Fusion in the Offshore Culture Area[J].Remote Sensing Technology and Application,2018,33(2):296-304.[王马.程博,刘岳明.基于多源特征融合的高分辨率遥感图像近海养殖区提取方法研究[J].遥感技术与应用,2018,33(2):296-304.]
[12] Zhu Q,Zhong Y,Zhao B,et al.Bag-of-Visual-Words Scene Classifier with Local and Global Features for High Spatial Resolution Remote Sensing Imagery[J].IEEE Geoscience and Remote Sensing Letters,2017,13(6):747-751.
[13] Olshausen B A,Field D J.Sparse Coding with an Overcomplete Basis Set:A Strategy Employed by V1?[J].Vision Research,1997,37(23):3311-3325.
[14] Lü Qi,Dou Yong,Niu Xin,et al.Classification of Remote Sensing Image based on DBN Model[J].Journal of Computer Research and Development,2014,51(9):1911-1918.[吕启,窦勇,牛新,等.基于DBN模型的遥感图像分类[J].计算机研究与发展,2014,51(9):1911-1918.]
[15] Liu Xingwang,Wang Jiangqing,Xu Ke.A Hybrid Algorithm Combining Auto Encoder and CNN for Image Feature Extraction[J].Application Research of Computers,2017,34(12):3839-3843.[刘兴旺,王江晴,徐科.一种融合Auto Encoder与CNN的混合算法用于图像特征提取[J].计算机应用研究,2017,34(12):3839-3843.]
[16] Hu Yong,Zhang Xiaocheng,Ma Zezhong,et al.Rapid Extraction of Rural Housing Information from Remote Sensing Images of UAVs[J].Remote Sensing of Land Resources,2016,28(3):96-101.[胡勇,张孝成,马泽忠,等.无人机遥感影像中农村房屋信息快速提取[J].国土资源遥感,2016,28(3):96-101.]
[17] Cheng Yuan’e,Zhou Shaoguang,Yuan Chunqi,et al.Hyperspectral Image Classification based on Active Deep Learning[J].Computer Engineering and Applications,2017,53(17):192-196.[程圆娥,周绍光,袁春琦,等.基于主动深度学习的高光谱影像分类[J].计算机工程与应用,2017,53(17):192-196.]
[18] Scott G J,England M R,Starms W A,et al.Training Deep Convolutional Neural Networks for Land-cover Classification of High-resolution Imagery[J].IEEE Geoscience and Remote Sensing Letters,2017,(99):1-5.
[19] Ali Sharif Razavian,Hossein Azizpour,Josephine Sullivan,et al.CNN Features Off-the-Shelf:An Astounding Baseline for Recognition[J].2014:512-519.
[20] Maggiori E,Tarabalka Y,Charpiat G,et al.Fully Convolutional Neural Networks for Remote Sensing Image Classification[C]∥IEEE Geoscience and Remote Sensing Symposium,2016:5071-5074.
[21] Qu B,Li X,Tao D,et al.Deep Semantic Understanding of High Resolution Remote Sensing Image[C]∥IEEE International Conference on Computer,Information and Telecommunication Systems,2016:1-5.
[22] Abdullahi H S,Sheriff R E,Mahieddine F.Convolution Neural Network in Precision Agriculture for Plant Image Recognition and Classification[C]∥International Conference on Innovative Computing Technology,2017:1-3.
[23] Huang X,Yuan W,Li J,et al.A New Building Extraction Postprocessing Framework for High-Spatial-Resolution Remote-Sensing Imagery[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,10(2):654-668.
[24] Krizhevsky A,Sutskever I,Hinton G E.Image Net Classification with Deep Convolutional Neural Networks[C]∥International Conference on Neural Information Processing Systems.Curran Associates Inc,2012:1097-1105.
[25] Simonyan K,Zisserman A.Very Deep Two-Stream Convolutional Networks for Action Recognition in Videos[C]∥Neural Information Processing Systems,2014:568-576.
[26] Lecun Y,Boser B,Denker J S,et al.Backpropagation Applied to Handwritten Zip Code Recognition[J].Neural Computation,2014,1(4):541-551.
[27] Cheng G,Li Z,Yao X,et al.Remote Sensing Image Scene Classification Using Bag of Convolutional Features[J].IEEE Geoscience and Remote Sensing Letters,2017,14(10):1735-1739.
[28] Cheng G,Han J,Lu X.Remote Sensing Image Scene Classification:Benchmark and State of the Art[J].Proceedings of the IEEE,2017,105(10):1865-1883.
[29] Cheng G,Ma C,Zhou P,et al.Scene Classification of High Resolution Remote Sensing Images Using Convolutional Neural Networks[C]∥IEEE Geoscience and Remote Sensing Symposium,2016:767-770.
[30] Xiao J,Hays J,Ehinger K A,et al.SUN Database:Large-scale Scene Recognition from Abbey to Zoo[C]∥IEEE Computer Vision and Pattern Recognition,2010:3485-3492.
[31] Szegedy C,Liu W,Jia Y,et al.Going Deeper with Convolutions[C]∥Computer Vision and Pattern Recognition.IEEE,2015:1-9.
[32] Lin M,Chen Q,Yan S,et al.Network in Network[C]∥International Conference on Learning Representations,2014:1-10.
[33] Xia G S,Hu J,Hu F,et al.AID:A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification[J].IEEE Transactions on Geoscience and Remote Sensing,2016,(99):1-17.
[34] Ioffe S,Szegedy C.Batch Normalization:Accelerating Deep Network Training by Reducing Internal Covariate Shift[J].2015:448-456.
[35] Szegedy C,Vanhoucke V,Ioffe S,et al.Rethinking the Inception Architecture for Computer Vision[C]∥Computer Vision and Pattern Recognition Computer Science.IEEE,2016:2818-2826.
[36] He K,Zhang X,Ren S,et al.Deep Residual Learning for Image Recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016,770-778.
[37] Deng Z,Lei L,Sun H,et al.An Enhanced Deep Convolutional Neural Network for Densely Packed Objects Detection in Remote Sensing Images[C]∥International Workshop on Remote Sensing with Intelligent Processing.IEEE,2017:1-4.
[38] Song X,Dai Y,Qin X.Deep Depth Super-Resolution:Learning Depth Super-Resolution Using Deep Convolutional Neural Network[J].Computer Science Computer Vision and Pattern Recognition,2016,10114:360-376.
[39] Liu F,Shen C,Lin G.Deep Convolutional Neural Fields for Depth Estimation from a Single Image[C]∥ Computer Vision and Pattern Recognition.IEEE,2015:5162-5170.
[40] Deng J,Dong W,Socher R,et al.ImageNet:A Large-scale Hierarchical Image Database[C]∥IEEE Conference on Computer Vision and Pattern Recognition,2009:248-255.
[41] Cheng G,Zhou P,Han J.Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(12):7405-7415.
[42] Liu Y,Zhong Y,Fei F,et al.Scene Semantic Classification based on Random-scale Stretched Convolutional Neural Network for High-spatial Resolution Remote Sensing Imagery[C]∥IEEE Geoscience and Remote Sensing Symposium,2016:763-766.
[43] Tao Y,Xu M,Zhang F,et al.Unsupervised-restricted Deconvolutional Neural Network for Very High Resolution Remote-Sensing Image Classification[J].IEEE Transactions on Geoscience and Remote Sensing,2017,(99):1-19.
[44] Fang Z,Li W,Zou J,et al.Using CNN-based High-level Features for Remote Sensing Scene Classification[C]∥IEEE Geoscience and Remote Sensing Symposium,2016:2610-2613.
[45] Hu F,Xia G S,Hu J,et al.Transferring Deep Convolutional Neural Networks for the Scene Classification of High-resolution Remote Sensing Imagery[J].Remote Sensing,2015,7(11):14680-14707.
[46] Nogueira K,Penatti O A B,Santos J A D.Towards Better Exploiting Convolutional Neural Networks for Remote Sensing Scene Classification[J].Pattern Recognition,2017,61:539-556.
[47] Lu X,Zheng X,Yuan Y.Remote Sensing Scene Classification by Unsupervised Representation Learning[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(9):5148-5157.
[48] Zeiler M D,Krishnan D,Taylor G W,et al.Deconvolutional Networks[C]∥
20 10 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2010:2528-2535.
[49] Zeiler M D,Taylor G W,Fergus R.Adaptive Deconvolutional Networks for Mid and High Level Feature Learning[C]∥IEEE International Conference on Computer Vision,2011:2018-2025.
[50] Zeiler M D,Fergus R.Visualizing and Understanding Convolutional Networks[C]∥European Conference on Computer Vision.Springer,Cham,2014:818-833.
[51] Long J,Shelhamer E,Darrell T.Fully Convolutional Networks for Semantic Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651.
[52] Long J,Shelhamer E,Darrell T.Fully Convolutional Networks for Semantic Segmentation[C]∥IEEE Computer Vision and Pattern Recognition,2015:3431-3440.
[53] Girshick R,Donahue J,Darrell T,et al.Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C]∥IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587.
[53] Girshick R,Donahue J,Darrell T,et al.Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C]∥IEEE Computer Vision and Pattern Recognition,2014:580-587.
[54] Wang Yannan,Wang Jianjian,Gong Jianxin,et al.Random Forest Method based on the Classification of Land-covered Landforms based on Environmental Satellite Data[J].Remote Sensing Technology and Application,2016,31(6):1107-1113.[王艳楠,王健健,龚健新,等.基于环境卫星数据的沿海滩涂地物类型分类的随机森林方法[J].遥感技术与应用,2016,31(6):1107-1113.]
[55] Yin Wenbin.Application of Convolution Neural Network in Remote Sensing Target Recognition[D].Beijing:University of Chinese Academy of Sciences,2017.[殷文斌.卷积神经网络在遥感目标识别中的应用研究[D].北京:中国科学院大学,2017.]
[1] 钟函笑,边金虎,李爱农. Landsat-8 OLI与Sentinel-2 MSI山区遥感影像辐射一致性研究[J]. 遥感技术与应用, 2018, 33(3): 428-438.
[2] 刘爱林,郭宝平,李岩山 . 基于离散粒子群算法的凸多模态高光谱图像端元提取研究[J]. 遥感技术与应用, 2018, 33(2): 227-232.
[3] 段金亮,王杰,张婷. 一种基于光谱归一化下的植被覆盖度反演算法[J]. 遥感技术与应用, 2018, 33(2): 252-258.
[4] 程博,刘岳明,刘旭楠,王桂周,马肖肖. 基于多源特征融合的高分辨率遥感图像近海养殖区提取方法研究[J]. 遥感技术与应用, 2018, 33(2): 296-304.
[5] 万玲,尤红建,程跃兵,卢晓军. 合成孔径雷达图像分割研究进展[J]. 遥感技术与应用, 2018, 33(1): 10-24.
[6] 吴迪,史文中,高利鹏,张华,何鹏飞. 一种改进的基于上下文信息的多源数据融合目标提取方法[J]. 遥感技术与应用, 2018, 33(1): 128-135.
[7] 李玉琴,苏程,王习之,黄智才,章孝灿. 菲律宾吕宋岛斑岩铜金矿遥感找矿模型[J]. 遥感技术与应用, 2017, 32(6): 1151-1160.
[8] 秦俊,冷寒冰,赵广琦,景军,周坚华. 物候和波谱—位置分析在城镇绿化植物群分类中的应用[J]. 遥感技术与应用, 2017, 32(5): 948-957.
[9] 张宝华,周文涛,吕晓琪. 基于稀疏分解和改进MRF模型的SAR海冰图像分割方法[J]. 遥感技术与应用, 2017, 32(4): 709-713.
[10] 袁春琦,徐佳,程圆娥,陈媛媛,许康. 基于协同训练与集成学习的极化SAR图像半监督分类[J]. 遥感技术与应用, 2017, 32(2): 380-385.
[11] 李炳亚,潘剑君,夏超,陈昕,隋传嘉. 基于空间位置关系的山地湖泊水体提取方法研究[J]. 遥感技术与应用, 2016, 31(5): 983-993.
[12] 孙小丹. 基于小波低频分量微调的IHS变换融合法及其应用[J]. 遥感技术与应用, 2011, 26(3): 328-333.
[13] 周红建, 周宗潭, 周蓉蓉, 王正志. 利用卫星SAR监测海上航行船舶[J]. 遥感技术与应用, 1999, 14(4): 10-16.
[14] 李四海, 恽才兴. 土地覆盖遥感专题信息的分层提取方法及其应用[J]. 遥感技术与应用, 1999, 14(4): 23-28.
[15] 骆剑承, 周成虎, 杨艳. 具有部分监督的遥感影像模糊聚类方法研究及应用[J]. 遥感技术与应用, 1999, 14(4): 37-43.