閬ユ劅鎶�鏈笌搴旂敤 鈥衡�� 2019, Vol. 34 鈥衡�� Issue (1): 57-67.DOI: 10.11873/j.issn.1004-0323.2019.1.0057

鈥� 鍦熷湴鍒╃敤/瑕嗚涓撴爮 鈥� 涓婁竴绡�    涓嬩竴绡�

澶嶆潅鍦板舰鍖哄湡鍦板埄鐢�/鍦熷湴瑕嗚鍒嗙被鏈哄櫒瀛︿範鏂规硶姣旇緝鐮旂┒

璋锋檽澶�1锛岄珮灏忕孩1锛岄┈鎱у1锛屽彶椋為1锛�2锛屽垬闆1锛�3锛屾浌鏅撴晱1锛�3顎�   

  1. 锛�1.闈掓捣甯堣寖澶у鍦扮悊绉戝瀛﹂櫌锛岄潚娴风渷鑷劧鍦扮悊涓庣幆澧冭繃绋嬮噸鐐瑰疄楠屽锛岄潚娴� 瑗垮畞 810008锛涱��
    2.闈掓捣鐪佹皵璞$瀛︾爺绌舵墍锛岄潚娴� 瑗垮畞810001锛�3.闈掓捣鐪佹皵璞″彴锛岄潚娴� 瑗垮畞 810001 锛�
  • 鏀剁鏃ユ湡:2018-02-05 鍑虹増鏃ユ湡:2019-02-20 鍙戝竷鏃ユ湡:2019-04-02
  • 浣滆�呯畝浠�:璋锋檽澶�(1993-)锛岀敺锛屽北涓滄祹鍗椾汉锛岀澹爺绌剁敓锛屼富瑕佷粠浜嬮仴鎰熷簲鐢ㄤ笌鍦扮悊绌洪棿鏁版嵁鍒嗘瀽鐮旂┒銆侲-mail锛�2993665395@qq.com銆�
  • 鍩洪噾璧勫姪:
    闈掓捣鐪佺鎶�鍘呰嚜鐒剁瀛﹀熀閲戦」鐩�(2016-ZJ-907)銆�

Comparison of Machine Learning Methods for Land Use/Land Cover Classification in the Complicated Terrain Regions

Gu Xiaotian1锛孏ao Xiaohong1锛孧a Huijuan1锛孲hi Feifei1锛�2 Liu Xuemei1锛�3锛孋ao Xiaomin1锛�3   

  1. (1.College of Geographical Sciences锛孭hysical Geography and Environmental Process Key Laboratory of Qinghai Province Qinghai Normal University锛孹ining 810008锛孋hina;2.Qinghai Institute of Meteorological Science锛孹ining 810001锛孋hina锛�3.Qinghai Meteorological Observatory锛孹ining 810001锛孋hina)
  • Received:2018-02-05 Online:2019-02-20 Published:2019-04-02

鎽樿锛�

閽堝楂樻捣鎷斿鏉傚湴褰㈠尯鍦拌矊绫诲瀷澶嶆潅銆佸鏍凤紝娌熷绾垫í銆佸湴褰㈢牬纰庣瓑鐗圭偣锛岀爺绌跺揩閫熴�佹湁鏁堢殑鍦熷湴鍒╃敤/鍦熷湴瑕嗚鍒嗙被鏂规硶瀵瑰湡鍦板埄鐢ㄤ俊鎭幏鍙栧強鏇存柊鏄潪甯搁噸瑕佺殑銆備互浣嶄簬榛勫湡楂樺師鍚戦潚钘忛珮鍘熻繃娓″甫鐨勬篃姘存祦鍩熶负鐮旂┒鍖哄煙锛屽熀浜嶭andsat 8 OLI褰卞儚鏁版嵁銆丏EM鏁版嵁锛屽苟缁撳悎鍚勭涓撻鐗瑰緛锛屽湪瀵圭爺绌跺尯杩涜鍦扮悊鍒嗗尯鐨勫熀纭�涓婏紝閲囩敤浜哄伐绁炵粡缃戠粶銆佸喅绛栨爲銆佹敮鎸佸悜閲忔満鍜岄殢鏈烘.鏋�4绉嶆満鍣ㄥ涔犳柟娉曡繘琛屽湡鍦板埄鐢ㄤ俊鎭彁鍙栧苟杩涜绮惧害璇勪环锛屾帰绱㈤�傚悎浜庡鏉傚湴褰㈠尯鏈�浼樼殑鍒嗙被鏂规硶銆傜爺绌剁粨鏋滆〃鏄庯細闅忔満妫灄鍜屽喅绛栨爲鐨勫垎绫荤簿搴︽槑鏄鹃珮浜庢敮鎸佸悜閲忔満鍜屼汉宸ョ缁忕綉缁溿�傚叾涓殢鏈烘.鏋楁柟娉曠殑鍒嗙被绮惧害鏈�楂橈紝鎬讳綋鍒嗙被绮惧害杈�85.65%锛孠appa绯绘暟杈�0.84銆傚湪涓婅堪鍒嗙被鍩虹涓婏紝閫夋嫨闅忔満妫灄鍒嗙被鏂规硶瀵筁andsat 8鍏ㄨ壊涓庡鍏夎氨褰卞儚铻嶅悎鏁版嵁杩涜杩涗竴姝ョ殑鍒嗙被鐮旂┒锛屾�讳綋鍒嗙被绮惧害杈惧埌[JP]86.49%锛孠appa绯绘暟杈�0.85銆傝繖琛ㄦ槑闅忔満妫灄鍒嗙被鏂规硶鍦ㄤ繚璇佸垎绫荤簿搴︾殑鍚屾椂鍙堣兘鑾峰緱杈冮珮鐨勫垎绫绘晥鐜囷紝瀵逛簬澶嶆潅鍦板舰鍖哄湡鍦板埄鐢ㄤ俊鎭彁鍙栨槸闈炲父鏈夋晥鐨勶紝鏁版嵁铻嶅悎鍦ㄤ竴瀹氱▼搴︿笂鎻愰珮浜嗗垎绫荤簿搴︺��

鍏抽敭璇�:  , 鍦熷湴鍒╃敤/鍦熷湴瑕嗚鍒嗙被锛汱andsat OLI褰卞儚锛涙満鍣ㄥ涔狅紱浜哄伐绁炵粡缃戠粶锛涘喅绛栨爲锛涙敮鎸佸悜閲忔満锛涢殢鏈烘.鏋楋紱婀熸按娴佸煙

Abstract:  Aiming at the characteristics of varied and complex geomorphic types锛宑risscross network of ravines and broken terrain in high altitude complicated terrain regions锛宨t is very important to study and find the rapid and effective land use/land cover classification method for obtaining and timely updating of land use information.Taking the Huangshui river basin located in the transitional zone between the Loess Plateau and the Qinghai-Tibet Plateau as acasestudy area锛宼he objective of this study is to explore a kind of effective information extraction method from comparison of four kinds machine learning methods for complicated terrain regions.based on Landsat 8 OLI satellite data锛孌EM and combined with various thematic features锛宱n the basis of geographical division of the study area锛宎rtificial neural network锛宒ecision tree锛宻upport vector machine and random forest four machine learning methods for land use information extraction were used to obtain land use data锛宎nd confusion matrix was constructed to evaluate classification accuracy.The results showed that the classification accuracies of random forest and decision tree are obviously higher than those of support vector machine and artificial neural network.The random forest method has the highest classification accuracy锛宼he overall classification accuracy is 85.65%锛宼he Kappa coefficient is 0.84.based on the above classification锛孯andom forest classification method was chose to further classify Landsat 8 fusion datafrom panchromatic 15 meter and multispectral 30 meter image锛宼he overall classification accuracy is 86.49% and the Kappa coefficient is 0.85.This indicated that the random forest classification method can obtain higher classification efficiency while ensuring the classification accuracy.It is very effective for the extraction of land use information in complicated terrain regions.Data fusion can improve the classification accuracy to a certain extent.

Key words: Land use/land cover classification, Landsat OLI images, Machine learning, Artificial neural network, Decision tree, Support vector machine, Random forest, the Huangshui river basin

涓浘鍒嗙被鍙�: