閬ユ劅鎶�鏈笌搴旂敤 鈥衡�� 2019, Vol. 34 鈥衡�� Issue (1): 68-78.DOI: 10.11873/j.issn.1004-0323.2019.1.0068

鈥� 鍦熷湴鍒╃敤/瑕嗚涓撴爮 鈥� 涓婁竴绡�    涓嬩竴绡�

鍩轰簬杩唬CART绠楁硶鍒嗗眰鍒嗙被鐨勫湡鍦拌鐩栭仴鎰熷垎绫活��

鍚磋枃1锛�2锛屽紶婧�1锛屾潕寮哄瓙1锛岄粍鎱ц悕1   

  1.  (1.涓浗绉戝闄㈤仴鎰熶笌鏁板瓧鍦扮悆鐮旂┒鎵�锛屽寳浜� 100101锛�
    2.涓浗绉戝闄㈠ぇ瀛︼紝鍖椾含 100049)
  • 鏀剁鏃ユ湡:2018-02-06 鍑虹増鏃ユ湡:2019-02-20 鍙戝竷鏃ユ湡:2019-04-02
  • 浣滆�呯畝浠�:鍚磋枃(1991-)锛屽コ锛屾睙瑗夸笂楗朵汉锛屽崥澹爺绌剁敓锛屼富瑕佷粠浜嬪煄甯傞仴鎰熸柟闈㈢殑鐮旂┒銆侲-mail锛歸uwei@radi.ac.cn銆�
  • 鍩洪噾璧勫姪:
     鍥藉湡璧勬簮閮ㄥ叕鐩婃�ц涓氱鐮斾笓椤光�滀含娲ュ唨鍦熷湴浼樺寲鍒╃敤涓�浣撳寲绠℃帶鍏抽敭鎶�鏈笌搴旂敤鈥濓紙201511010锛夈��

A Hierarchical Classification and Iterative Model based Method顎僨or Remote Sensing Classification of Land Cover

 Wu Wei1锛�2锛孼hang Yuan1锛孡i Qiangzi1锛孒uang Huiping1顎�   

  1.  (1.Institute of Remote Sensing and Digital Earth锛孋hinese Academy of Sciences锛孊eijing 100101锛孋hina;顎�
    2.University of Chinese Academy of Sciences锛孊eijing 100049锛孋hina)
  • Received:2018-02-06 Online:2019-02-20 Published:2019-04-02

鎽樿锛�

鍦熷湴瑕嗙洊閬ユ劅鍒嗙被鏄湡鍦板埄鐢ㄥ彉鍖栫洃娴嬪強鍏剁┖闂存牸灞�鍒嗘瀽鐨勯噸瑕佹妧鏈墜娈点�備负浜嗚繘涓�姝ユ彁楂樺湡鍦拌鐩栭仴鎰熷垎绫荤簿搴︼紝鎻愬嚭涓�绉嶅熀浜庤凯浠ART绠楁硶鍒嗗眰鍒嗙被鐨勬柊鎶�鏈綋绯汇�傞鍏堬紝鏍规嵁绫诲埆鍏夎氨鍙垎鎬у垎鏋愶紝纭畾鍒嗗眰鍒嗙被鏂规硶鐨勭被鍒彁鍙栭『搴忎緷娆′负姘翠綋銆佹琚�佽8鍦板拰寤鸿鐢ㄥ湴銆傜劧鍚庯紝鍦ㄦ鍒嗙被椤哄簭涓嬶紝鍒嗗埆纭畾鍚勭被鍒殑鍥惧儚鍒嗗壊鍙傛暟鍜屽垎绫荤壒寰侀泦銆傛渶鍚庯紝鍦ㄥ璞″昂搴︿笂锛屽皢CART绠楁硶杩唬寮曞叆鍒嗗眰鍒嗙被杩囩▼锛屼笉鏂�夊彇璁粌鏍锋湰杩涜CART绠楁硶鐨勮凯浠e垎绫讳緷娆℃彁鍙栧墠3涓被鍒紝灏嗗墿浣欓儴鍒嗙洿鎺ュ垝鍒嗕负寤鸿鐢ㄥ湴銆傚疄楠岀粨鏋滆瘉鏄庯細璇ユ柟娉曞彲浠ユ槑鏄惧噺杞昏8鍦板拰寤鸿鐢ㄥ湴鐨勬贩鍒嗙幇璞★紝鑾峰緱杈冮珮绮惧害鐨勫湡鍦拌鐩栧垎绫荤粨鏋滐紝鎬讳綋绮惧害85.76%锛孠appa绯绘暟0.72銆傜浉姣斾簬SVM銆丆ART涓ょ鍗曟鍒嗙被鏂规硶锛屾�讳綋绮惧害鍜孠appa绯绘暟鍒嗗埆鎻愬崌浜�10.67%~16.5%鍜�0.15~0.21銆傚悓鏃讹紝璇ユ柟娉曡兘澶熺伒娲昏皟鏁存煇涓被鍒殑鍒嗙被绮惧害骞跺叿鏈夊緢寮虹殑鎵╁睍鎬э紝鍙互涓哄叾浠栨秹鍙婂浘鍍忓垎绫荤殑閬ユ劅搴旂敤棰嗗煙鎻愪緵鏂规硶鍙傝�冦��

 

鍏抽敭璇�: 鍦熷湴瑕嗙洊, 鍒嗗眰鍒嗙被, 杩唬, 鍙垎鎬�, 楂樺垎浜屽彿

Abstract: Land cover classification based on remote sensing is an important means to analyze the change and spatial pattern of land use.In order to further improve the classification accuracy锛宼his paper proposed a hierarchical classification and iterative CART model based method for remote sensing classification of landcover.Firstly锛宼he extraction order of land cover classes was determined based on the class separability evaluation锛寃hich was water锛寁egetation锛宐are soil and built-up land.Secondly锛寃e selected the optimal image segmentation parameters and a set of sensitive features for each class during the hierarchical classification process.Finally锛宱bject-based training samples were selected to be fed into the iterative CART algorithm for the successive extraction of the first three classes锛寃ith the remaining unclassified objects being directly assigned to the last class.Results demonstrated that the proposed method can significantly reduce the mixture between bare soil and built-up land锛宎nd is capable of achieving landcover classification with much higher accuracy.The proposed method achieved an overall accuracy of 85.76% and a Kappa efficient of 0.72锛寃ith the performance improvements ranging from 10.67% to 16.5% and 0.15 to 0.21 as compared SVM and CART single classification methods.The classification accuracy of a specific class can be flexibly adjusted using this method锛実iving different purposes of classification.This method can also be easily extended to other districts and disciplines involving remote sensing image classification.

Key words: Land cover, Hierarchical classification, Iteration, Separability, GF-2

涓浘鍒嗙被鍙�: