Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (1): 90-100    DOI: 10.11873/j.issn.1004-0323.2019.1.0090
土地利用/覆被专栏     
近30 a来蒙古国乌兰巴托市城镇扩张及其驱动力分析
程凯1,2,王卷乐1,4,Jaahanaa Davaadorj3,韩雪华1,2
(1.中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京 100101;
2.中国科学院大学,北京 100049;3.蒙古国立大学,乌兰巴托 14201,蒙古;
4.江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023)
Urban Expansion and Driving Force Analysis of Ulaanbaatar in Mongolia in Recent Thirty Years
Cheng Kai1,2,Wang Juanle1,4,Jaahanaa Davaadorj3,Han Xuehua1,2
(1.State Key Laboratory of Resources and Environmental Information System,Institute of GeographicSciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China; 2.University of Chinese Academy of Sciences,Beijing 100049,China; 
3.School of Art & Sciences,The National University of Mongolia,Ulaanbaatar 14201,Mongolia; 4.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing 210023,China)
 全文: PDF(5369 KB)  
摘要: 蒙古国自20世纪90年代政体改革以来,城镇化发展迅速,认识其区域发展特征与城镇化特点对于我国“一带一路”倡议实施及“中蒙俄经济走廊”建设具有重要意义。基于遥感影像,采用面向对象的分类方法,获取了蒙古国乌兰巴托市1990、2001、2010、2017年土地覆盖数据集,总体分类精度分别为86.00%、89.00%、91.6%、94.80%。利用转移矩阵对其土地覆盖变化信息进行了挖掘,结果表明:草地—林地、草地—建筑用地、林地—草地之间的转移占绝对优势。建筑用地增幅最大,扩张趋势显著,面积从99.87 km2增加到了216.16 km2,增幅达到了216.44%,扩张速率8.01 km2/a,属于快速扩展模式。扩张方向以中北部、东北部和西部为主。其中,中北部主要是“summer house”度假房屋建设为主,东北部以传统的家—户—院的房屋为主(蒙古包与低层建筑混搭),西部以工业用地与居民用地为主。乌兰巴托市城镇用地扩张是外部社会经济发展和国家制度政策共同作用发生的,其中,土地私有化、市场经济化与人口数量是城镇用地扩张最主要的驱动因素。
关键词: 土地覆盖变化建筑用地扩张面向对象灰色关联分析乌兰巴托    
Abstract: Since the reform of the regime in the 1990s,Mongolian urban experienced a rapid development.Understanding the characteristics of urbanization and development in Mongolia is much of significance to China’s implementation of the “Belt and Road” strategy and “China-Mongolia-Russia Economic Corridor”.This study was based on theLandsat TM/OLI remote sensing image,using object-oriented classification method,and obtained 1990,2001,2010,2017 land cover data set,the overall classification accuracy were 86%,89%,91.6%,94.80% respectively,Kappa coefficient were 0.83,0.869,0,898,0,935.based on the transfer matrix,the information of land cover change from 1990 to 2017 in Ulaanbaatar was mined,the results showed that:① the areas of built area,barren,and water showed an increasing trend,and the built area was increased most.On the contrary,the area of forest,cropland,and grassland showed a tendency to decrease,and the forest area decreased most.② the transfer between grassland and forest,grassland and built area,forest and grassland played a major role in land cover change of Ulaanbaatar.The change area from 1990 to 2001,2001 to 2010 and 2010 to 2017 accounted for nearly 71%,74%,and 79% of the total change area.③ the expansion trend of built area was significant,the area has increased from 99.87 km2to 216.16 km2,the growth rate has reached 216%,the expansion rate was 8.01 km2/a,which belonged to the rapid expansion mode.The middle-north with the type of summer house,northeast with the types of traditional houses based on the structure of home-household-yard,mixture of Mongolian yurts and low buildings,west with the types of industrial land and residential land.The urbanization in Ulaanbaatar caused by the interaction of external social economic development and national policies,among of which,land privatization and market economic were the main policy driving forces of urbanization
Key words: Land cover change    Built area expansion    Object-oriented classification    Grey correlation analysis
收稿日期: 2018-01-31 出版日期: 2019-04-02
ZTFLH:  F301.24  
基金资助: 中国科学院战略性先导科技专项(A类)(XDA2003020302),中国科学院“十三五”信息化专项科学大数据工程项目(XXH13505-07),中国工程科技知识中心建设项目(CKCEST-2018-2-8).
作者简介: 程凯(1991-),男,辽宁凌源人,博士研究生,主要从事遥感信息提取研究。E-mail:chengk@lreis.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

程凯, 王卷乐, Jaahanaa Davaadorj, 韩雪华. 近30 a来蒙古国乌兰巴托市城镇扩张及其驱动力分析[J]. 遥感技术与应用, 2019, 34(1): 90-100.

Cheng Kai, Wang Juanle, Jaahanaa Davaadorj, Han Xuehua. Urban Expansion and Driving Force Analysis of Ulaanbaatar in Mongolia in Recent Thirty Years. Remote Sensing Technology and Application, 2019, 34(1): 90-100.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.1.0090        http://www.rsta.ac.cn/CN/Y2019/V34/I1/90

[1]Montzka C,Jagdhuber T,Horn R,et al.Investigationof SMAP Fusion Algorithms With Airborne Active and Passive L-band Microwave Remote Sensing[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(7):3878-3889.
[2]Wang Zhenzhan,Jiang Jingshan,Liu Jingyi,et al.Critical Technique and Scientific Topic on Fully Polarized Microwave Radiometer Remote Sensing Sea Surface Wind Vector[J].Engineering Sciences,2008,10(6):76-86.[王振占,姜景山,刘璟怡,等.全极化微波辐射计遥感海面风场的关键技术和科学问题[J].中国工程科学,2008,10(6):76-86.][ZK)]
[3]Lu Hao,Wang Zhenzhan.The Error Analysis of Digital Technology in Polarimetric Microwave Radiometer[J].Acta Electronica Sinica,2013,41(6):1084-1087.[陆浩,王振占.全极化微波辐射计数字化引入误差分析[J].电子学报,2013,41(6):1084-1087.]
[4]Okumura S K,Momose M,Kawaguchi N,et al.1 GHz Bandwidth Digital Spectro-correlator System for the Nobeyama Millimeter Array[J].Publications of the Astronomical Society of Japan,2000,52(2):393-400.
[5]Wang Zhenzhan,Xie Ying,Lu Hao,et al.Calibration and Impact Analysis of 23.8 GHz Digital-correlation Fullpolarimetric Microwave Radiometer[J].Remote Sensing Technology and Application,2015,30(4):744-756.[王振占,谢莹,陆浩,等.23.8 GHz 数字相关型全极化微波辐射计的定标及其影响分析[J].遥感技术与应用,2015,30(4):744-756.]
[6]Skou N,Laursen B,Sobjaerg S.Polarimetric Radiometer Configurations:Potential Accuracy and Sensitivity[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(5):2165-2171.
[7]Yueh S H,Wilson W J,Li F K,et al.Polarimetric Measurements of Sea Surface Brightness Temperatures Using an Aircraft K-band Radiometer[J].IEEE Transactions on Geoscience and Remote Sensing,1995,33(1):85-92.
[8]Xavier B L,Isaac R P,Adriano C,et al.A General Analysis of the Impact of Digitization in Microwave Correlation Radiometers[J].Sensors,2011,11(6):6066-6087.
[9]Li Huiling,Liu Hao,Wu Ji,et al.Research on the Preprocessing Method for the Visibility Functions in Synthetic Aperture Radiometer and the Time Domain Simulation[J].Journal of Electronics and Information Technology,2012,34(10):2475-2481.[李慧玲,刘浩,吴季,等.综合孔径辐射计可见度函数预处理算法及时域仿真研究[J].电子与信息学报,2012,34(10):2475-2481.]
[10]Skou N,Laursen B,Sobjaerg S.Polarimetric Radiometer Configurations:Potential Accuracy and Sensitivity[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(5):2165-2171.
[11]Thompson A R,Moran J M,Swenson Jr G W.Interferometry and Synthesis in Radio Astronomy[M].New York:Springer,2017.
[12]Piepmeier J R,Gasiewski A J.Digital Correlation Microwave Polarimetry:Analysis and Demonstration[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(11):2392-2410.

[1] 刘立, 刘勇. 基于优化分割分类层次体系的土地覆被分类制图方法探讨[J]. 遥感技术与应用, 2019, 34(1): 79-89.
[2] 李哲, 宫兆宁, 刘先林, 关晖, 王颖. 基于面向对象多端元混解模型的植被覆盖度反演及其时空分布研究[J]. 遥感技术与应用, 2018, 33(6): 1149-1158.
[3] 闫鹏飞,明冬萍. 尺度自适应的高分辨率遥感影像分水岭分割方法[J]. 遥感技术与应用, 2018, 33(2): 321-330.
[4] 江东,陈帅,丁方宇,付晶莹,郝蒙蒙. 基于面向对象的遥感影像分类研究——以河北省柏乡县为例[J]. 遥感技术与应用, 2018, 33(1): 143-150.
[5] 田峰,陈冬花,黄新利,李虎,姚国慧. 基于形态学阴影指数的高分二号影像建筑物高度估计#br#[J]. 遥感技术与应用, 2017, 32(5): 844-850.
[6] 林齐根,邹振华,祝瑛琦,王瑛. 基于光谱、空间和形态特征的面向对象滑坡识别[J]. 遥感技术与应用, 2017, 32(5): 931-937.
[7] 姬忠林,张月平,李乔玄,刘绍贵,李淑娟,任红艳. 基于GF-1影像的冬小麦和油菜种植信息提取[J]. 遥感技术与应用, 2017, 32(4): 760-765.
[8] 王苏芸,孙中昶,郭华东,申维. 基于面向对象的东营市城乡建设用地信息提取[J]. 遥感技术与应用, 2017, 32(4): 780-786.
[9] 施佩荣,陈永富,刘华,吴云华,魏新,钟泽兵. 基于改进的面向对象遥感影像分类方法研究—以西藏米林县典型林区为例[J]. 遥感技术与应用, 2017, 32(3): 466-474.
[10] 姜萍,刘修国,陈启浩,邵芳芳. 利用多尺度SVM-CRF模型的极化SAR图像建筑物提取[J]. 遥感技术与应用, 2017, 32(3): 475-482.
[11] 朱钟正,陈玉福,朱文泉,郑周涛. 适用于多目标遥感自动解译的最佳专题指数筛选[J]. 遥感技术与应用, 2017, 32(3): 564-574.
[12] 郝泷,陈永富,刘华,朱雪林,达哇扎西,李伟娜. 基于纹理信息CART决策树的林芝县森林植被面向对象分类[J]. 遥感技术与应用, 2017, 32(2): 386-394.
[13] 邓滢,张红,王超,刘萌. 结合纹理与极化分解的面向对象极化SAR水体提取方法[J]. 遥感技术与应用, 2016, 31(4): 714-723.
[14] 王娟,廖静娟,沈国状,许涛. 基于面向对象技术的鄱阳湖湿地地物分类研究[J]. 遥感技术与应用, 2016, 31(3): 543-550.
[15] 王嘉芃,刘婷,俞志强,胡潭高,张登荣,寻丹丹,王冬海. 基于COSMOGSkyMed和SPOTG5的城镇洪水淹没信息快速提取研究[J]. 遥感技术与应用, 2016, 31(3): 564-571.