閬ユ劅鎶�鏈笌搴旂敤 鈥衡�� 2019, Vol. 34 鈥衡�� Issue (1): 115-124.DOI: 10.11873/j.issn.1004-0323.2019.1.0115

鈥� 鏁版嵁涓庡浘鍍忓鐞� 鈥� 涓婁竴绡�    涓嬩竴绡�

ELM涓嶴VM鍦ㄩ珮鍏夎氨閬ユ劅鍥惧儚鐩戠潱鍒嗙被涓殑姣旇緝鐮旂┒

鐗熷閾庯紝鍒樼   

  1. (闀垮畨澶у鍦扮悆绉戝涓庤祫婧愬闄紝闄曡タ 瑗垮畨 710064)
  • 鏀剁鏃ユ湡:2018-04-11 鍑虹増鏃ユ湡:2019-02-20 鍙戝竷鏃ユ湡:2019-04-02
  • 浣滆�呯畝浠�:鐗熷閾庯紙1991-锛夛紝鐢凤紝杈藉畞澶ц繛浜猴紝纭曞+鐮旂┒鐢燂紝涓昏浠庝簨閬ユ劅涓嶨IS搴旂敤鐮旂┒銆侲-mail锛�2488545866@qq.com銆�
  • 鍩洪噾璧勫姪:
    闄曡タ鐪佸垱鏂拌兘鍔涙敮鎾戣鍒�(2018KJXX-062)锛屼腑澶珮鏍″熀鏈鐮斾笟鍔¤垂涓撻」璧勯噾(300102278303)銆�

Comparative Study of ELM and SVM in Hyperspectral Image Supervision Classification

Mou Duoduo锛孡iu Lei   

  1. (School of Earth Science and Resources锛孋hang'an University锛孹i鈥檃n锛�710064锛孋hina)
  • Received:2018-04-11 Online:2019-02-20 Published:2019-04-02

鎽樿锛� 鍦ㄩ珮鍏夎氨閬ユ劅鍥惧儚鐩戠潱鍒嗙被杩囩▼涓姞鍏ョ┖闂寸壒寰佷俊鎭紝鍙湁鏁堟彁楂樺垎绫荤殑閫熷害涓庣簿搴︺�傚皢绌洪棿淇℃伅鎻愬彇鏂规硶鍒嗘按宀硶涓庢瀬闄愬涔犳満(ELM)鍜屾敮鎸佸悜閲忔満(SVM)鐩哥粨鍚堬紝瀵逛袱绉嶅垎绫绘柟娉曞姞鍏ョ┖闂寸壒寰佷俊鎭墠鍚庣殑鍒嗙被缁撴灉杩涜鏃堕棿涓庣簿搴︾殑缁煎悎璇勪环涓庢瘮杈冨垎鏋愩�備互鎰忓ぇ鍒╁笗缁翠簹澶у(PaviaU)ROSIS鍜屽崥鑼ㄧ摝绾�(Botswana)濂ュ崱鐡︾撼涓夎娲睭yperion楂樺厜璋遍仴鎰熸暟鎹繘琛岃瘯楠岋紝棣栧厛瀵瑰師濮嬪浘鍍忔暟鎹繘琛岄澶勭悊锛屽涓嶅悓鍦扮墿绫诲埆閫夊彇閫傚綋鐨勮缁冩牱鏈綔涓哄垎绫荤殑鍙傝�冨尯鍩燂紝鐒跺悗瀵瑰悇绫诲埆鐨勫厜璋辩壒寰佽繘琛屽垎鏋愶紝骞跺垎鍒繍鐢ㄤ袱绉嶅垎绫绘柟娉曞鏁版嵁闆嗚繘琛屽垎绫诲疄楠岋紱涔嬪悗灏嗗厜璋辩壒寰佷笌绌洪棿鐗瑰緛缁撳悎瀵规暟鎹繘琛屽垎绫昏瘯楠屻�傚疄楠岀粨鏋滆〃鏄庯細鍦ㄥ垎绫绘椂闂村強绮惧害鏂归潰锛屾瀬闄愬涔犳満(ELM)鍧囦紭浜庢敮鎸佸悜閲忔満(SVM)锛涘湪鍒嗙被杩囩▼涓紩鍏ョ┖闂寸壒寰佷俊鎭紝鍙湁鏁堟彁楂樺垎绫荤簿搴︺��

鍏抽敭璇�: 楂樺厜璋遍仴鎰�, 鐩戠潱鍒嗙被, 鏋侀檺瀛︿範鏈�, 鏀寔鍚戦噺鏈�, 鏃堕棿涓庣簿搴�

Abstract: Combining the spatial features and spectral feature of hyperspectral remote sensing image in supervised classification can effectively improve the classification time and accuracy.In this study锛宼he spatial information extraction method锛宯amed watershed transform锛寃as combined with the Extreme Learning Machine(ELM)and Support Vector Machine(SVM)methods.The classification results of the datasets with the spatial features and without the spatial features were synthetically evaluated and compared.Two hyperspectral datasets锛宼he ROSIS data of Pavia university and the Hyperion data of Okavango Delta(Botswana)锛寃ere selected to test the methods.After preprocessing锛宼he training samples were selected from the images as the reference areas for each type锛宎nd the spectral features of each type were analyzed.The two classification methods were utilized to classify the hyperspectral datasets and relevant classification results were obtained.based on the validation samples selected from the images锛宼he classification results were evaluated using the confusion matrix and the execution times.After that锛宼he spectral features and spatial features were combined to classify the data.The results show that the Extreme Learning Machine(ELM) is superior to the Support Vector Machine(SVM)in the classification time and precision锛宎nd the spatial features are introduced in the classification process锛寃hich can effectively improve the classification accuracy.

Key words: Hyperspectral remote sensing, Supervised classification, Extreme learning machine, Support vector machine, Classification time and accuracy

涓浘鍒嗙被鍙�: