Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (2): 225-231    DOI: 10.11873/j.issn.1004-0323.2019.2.0225
LiDAR专栏     
高光谱激光雷达谱位合一的角度效应分析
林沂1,张萌丹1,张立福2,江淼3
 (1.北京大学地球与空间科学学院,遥感与地理信息系统研究所,北京 100871;
2.中国科学院遥感与数字地球研究所,北京 100094;
3.中国冶金地质总局矿产资源研究院,北京 101300)
Exploration of the Angular Effect in Hyperspectral LiDAR Spectrum-Location-Synchronous Data Collection
Lin Yi1,Zhang Mengdan1,Zhang Lifu2,Jiang Miao3
(1.Institute of Remote Sensing and GIS,School of Earth and Space Sciences,Peking University,Beijing 100871,China;
2.Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100094,China;
3.Institute of Mineral Resources Research,China Metallurgical Geology Bureau,Beijing 101300,China)
 全文: PDF(1542 KB)  
摘要: 高光谱激光雷达以其谱位合一的技术优势为实现超三维精准遥感观测提供了可行途径,因此成为当前激光雷达与高光谱遥感领域共同大力推进的前沿发展方向。目前已有多型原型系统研发出来并得到了原理性验证,然而针对其数据处理核心环节问题的基础技术仍较为欠缺。典型问题之一是不同波段回波信号受激光入射角度的影响,该角度效应限制了高光谱激光雷达实现高性能遥感。以芬兰空间信息研究所高光谱激光雷达原型系统扫描桦树树干为例探讨了该角度效应,发现了不同激光波段对不同入射角度的回波强度响应模式,推导出了角度效应的基本规律及其精细尺度的统计规律,为后续该方向的系统研发、数据处理及信息提取等提供了可借鉴的底层机理与技术基础。
关键词: 高光谱激光雷达角度效应谱位合一
    
Abstract:

Hyperspectral Light Detection And Ranging(LiDAR) is a research direction that is being passionately advanced by both of the communities of LiDAR and hyperspectral remote sensing,because this frontier technology is of high potential for providing a feasible way to realize the beyond-3D RS.Some prototype systems have been developed and principally validated,but,so far,the fundamental technologies aiming at the core circles of its functioning are still in shortage.One of the representative circles is that the backscatting signals of different spectral bands are affected by the incidence angles of lasers,and this angular effect restricts hyperspectral LiDAR from achieving high-performance RS.In order to better grasp this angular effect that is caused by the morphology of object surfaces impacting the spectrum-location-synchronous data collection,this study explored its underlying characteristics,in the case of applying the Finnish Geospatial Research Institute-constructed hyperspectral LiDAR prototype system for measuring the trunk of a Birch tree.The rules of its different spectral bands responding to different laser incidence angles were analyzed and deduced,e.g.,for all of the spectral bands,their angular effects become weakening along with the laser incidence angles increasing.The findings of this study can provide new knowledge about the underlying mechanism of the angular effect,in favor of the following hyperspectral LiDAR researches on system development,data processing,and information derivation.
 

Key words: Hyperspectral LiDAR    Angular effect    Spectrum-Location-Synchrony
收稿日期: 2018-04-09 出版日期: 2019-05-10
ZTFLH:  P237  
基金资助: 国家自然科学基金项目(31670718、41471281)。
作者简介: 林沂(1979-),男,山东诸城人,研究员,主要从事激光雷达遥感研究。Email:yi.lin@pku.edu.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

林沂, 张萌丹, 张立福, 江淼. 高光谱激光雷达谱位合一的角度效应分析[J]. 遥感技术与应用, 2019, 34(2): 225-231.

Lin Yi, Zhang Mengdan, Zhang Lifu, Jiang Miao. Exploration of the Angular Effect in Hyperspectral LiDAR Spectrum-Location-Synchronous Data Collection. Remote Sensing Technology and Application, 2019, 34(2): 225-231.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.2.0225        http://www.rsta.ac.cn/CN/Y2019/V34/I2/225

<p> [1]Swatantran A,Dubayah R,Roberts D,et al.Mapping Biomass and Stress in the Sierra Nevada Using LiDAR and Hyperspectral Data Fusion[J].Remote Sensing of Environment,2011,115:2917-2930. </p> <p> [2]Rall J,Knox R.Spectral Ratio Biospheric LiDAR[C]∥IEEE International Geoscience and Remote Sensing Symposium,Anchorage,AK,20-24 September,2004. </p> <p> [3]Morsdorf F,Nichol C,Malthus T,et al.Assessing Forest Structural and Physiological Information Content of Multi-spectral LiDAR Waveforms by Radiative Transfer Modelling[J].Remote Sensing of Environment,2009,113:2152-2163. </p> <p> [4]Kaasalainen S,Lindroos T,Hyypp J.Toward Hyperspectral LiDAR:Measurement of Spectral Backscatter Intensity with a Supercontinuum Laser Source[J].IEEE Geosecience and Remote Sensing Letters,2007,4:211-215. </p> <p> [5]Chen Y,Rikknen E,Kaasalainen S,et al.Two-channel Hyperspectral LiDAR with a Supercontinuum Laser Source[J].Sensors,2010,10:7057-7066. </p> <p> [6]Hakala T,Suomalainen J,Kaasalainen S,et al.Full Waveform Hyperspectral LiDAR for Terrestrial Laser Scanning[J].Optics Express,2012,20:7119-7127. </p> <p> [7]Gong W,Song S,Zhu B,et al.Multi-wavelength Canopy LiDAR for Remote Sensing of Vegetation:Design and System Performance[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,69:1-9. </p> <p> [8]Shi Shuo,Gong Wei,Zhu Bo,et al.A Novel Multi-spectral LiDAR for Earth Observation and Implementation of Control System[J].Geomatics and Information Science of Wuhan University,2013,38(11):1294-1297.[史硕,龚威,祝波,等.新型对地观测多光谱激光雷达及其控制实现[J].武汉大学学报·信息科学版,2013,38(11):1294-1297.] </p> <p> [9]Du L,Gong W,Shi S,et al.Estimation of Rice Leaf Nitrogen Contents based on Hyperspectral LiDAR[J].International Journal of Applied Earth Observation and Geoinformation,2016,44:136-143. </p> <p>  [10]Niu Z,Xu Z,Sun G,et al.Design of a New Multispectral Waveform LiDAR Instrument to Monitor Vegetation[J].IEEE Geoscience and Remote Sensing Letters,2015,12(7):1506-1510. </p> <p> [11]Li W,Niu Z,Sun G,et al.Estimation of Leaf Biochemical Content Using a Novel Hyperspectral Full-waveform LiDAR System[J].Optics Express,2016,24(5):4771-4785. </p> <p>  [12]Nevalainen O,Hakala T,Suomalainen J,et al.Fast and Nondestructive Method for Leaf Level Chlorophyll Estimation [HJ2.13mm]Using Hyperspectral LiDAR[J].Agriculture and Forest Meteorology,2014,198-199:250-258. </p> <p> [13]Lin Y.LiDAR:An Important Tool for Next-generation Phenotyping Technology of High Potential for Plant Phenomics?[J].Computers and Electronics in Agriculture,2015,119:61-73. </p> <p> [14]Puttonen E,Briese C,Mandlburger G,et al.Quantification of Overnight Movement of Birch(Betula Pendula) Branches and Foliage with Short Interval Terrestrial Laser Scanning[J].Frontiers in Plant Science,2016,7:222. [15]Lin Y,Hyypp J,Puttonen E.Hyperspectral LiDAR:3D Biophysichemical Ecometrics[J].Remote Sensing Informatics,2017,32(1),5-9.[林沂,Hyypp Juha,Puttonen Eetu.高光谱激光雷达:三维生物物理化学生态测量学[J].遥感信息,2017,32(1):5-9.] </p> <p> [16]Feng Mingbo,Niu Zheng,Sun Gang.The Analysis of Vegetation Spectra based on Multi-band LiDAR[J].Spectroscopy and Spectral Analysis,2017,37(6):1809-1813.[丰明博,牛铮,孙刚.多波段激光雷达植被光谱分析[J].光谱学与光谱分析,2017,37(6):1809-1813.] </p> <p> [17]Eitel J U H,Vierling L A,Long D S,et al.Early Season Remote Sensing of Wheat Nitrogen Status Using a Green Scanner Laser[J].Agricultural and Forest Meteorology,2011,151:1338-1345. </p> <p> [18]Gaulton R,Danson F M,Ramirez F A,et al.The Potential of Dual-wavelength Laser Scanning for Estimating Vegetation Moisture Content[J].Remote Sensing of Environment,2013,132:32-39. </p> <p> [19]Maas H,Bienert A,Scheller S,et al.Automatic Forest Inventory Parameter Determination from Terrestrial Laser Scanner Data[J].International Journal of Remote Sensing,2008,29:1579-1593. </p> <p> [20]Marshall D,Lukacs G,Martin R.Robust Segmentation of Primitives from Range Data in the Presence of Geometric Degeneracy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23:304-314. [21]Guo C,Yan L.Road Spectral and Morphological Characteristics based Rectification of The Fluctuation Effect of Mobile Spectral Line Camera Imaging[C]∥Proceedings of SPIE 9263,Multispectral,Hyperspectral,and Ultraspectral Remote Sensing Technology,Techniques and Applications.Beijing:SPIE,2014. </p> <p> [22]Staiger R.Terrestrial Laser Scanning-Technology,Systems and Applications[C]∥2ndFIG Regional Conference.Marrakech,Morocco:FIG,2003. </p>
[1] 丛铭, 段晨曦, 许妙忠, 陶翊婷. 基于格式塔形状分析的高分辨率遥感影像道路提取[J]. 遥感技术与应用, 2019, 34(3): 595-601.
[2] 杜跃飞, 刘正军, 冯天文. PPP技术与机载激光雷达在电力线巡检中的应用研究[J]. 遥感技术与应用, 2019, 34(2): 263-268.
[3] 牟多铎, 刘磊. ELM与SVM在高光谱遥感图像监督分类中的比较研究[J]. 遥感技术与应用, 2019, 34(1): 115-124.
[4] 刘洁, 李静, 柳钦火, 何彬彬, 于文涛. 全球典型植被叶片光谱特征及其对LAI反演的影响分析[J]. 遥感技术与应用, 2019, 34(1): 155-165.
[5] 高书鹏, 史正涛, 刘晓龙, 柏延臣. 基于高时空分辨率可见光遥感数据的热带山地橡胶林识别[J]. 遥感技术与应用, 2018, 33(6): 1122-1131.
[6] 李丹, 杨斌, 陈财. 基于Sentinel-1A数据反演九寨沟地震地表形变场[J]. 遥感技术与应用, 2018, 33(6): 1141-1148.
[7] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[8] 李军, 龚围, 辛晓洲, 高阳华. 重庆地表温度的遥感反演及其空间分异特征[J]. 遥感技术与应用, 2018, 33(5): 820-829.
[9] 李姣姣, 刘玉, 陈锟山. 基于香农熵的极化SAR相干矩阵信息量评价[J]. 遥感技术与应用, 2018, 33(5): 842-849.
[10] 杨军, 裴剑杰. 一种改进的隐马尔可夫随机场遥感影像分割算法[J]. 遥感技术与应用, 2018, 33(5): 857-865.
[11] 郝斌飞,韩旭军,马明国,刘一韬,李世卫. Google Earth Engine在地球科学与环境科学中的应用研究进展[J]. 遥感技术与应用, 2018, 33(4): 600-611.
[12] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[13] 孟梦,牛铮. 近30 a内蒙古NDVI演变特征及其对气候的响应[J]. 遥感技术与应用, 2018, 33(4): 676-685.
[14] 卢惠敏,李飞,张美亮,杨刚,孙伟伟. 景观格局对杭州城市热环境年内变化的影响分析[J]. 遥感技术与应用, 2018, 33(3): 398-407.
[15] 史新,周买春. 基于Landsat 8数据的3种地表温度反演算法在三河坝流域的对比分析[J]. 遥感技术与应用, 2018, 33(3): 465-475.