Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (3): 467-475    DOI: doi:10.11873/j.issn.1004-0323.2019.3.0467
荧光遥感专栏     
基于查找表的塔基平台O2-A波段大气校正方法研究
郭健1,2,刘良云1,2,刘新杰2,胡姣婵2,竞霞1
(1.西安科技大学 测绘科学与技术学院,陕西 西安710054;
2.中国科学院遥感与数字地球研究所,北京100094)
An O2-A Band Atmospheric Correction Algorithm for Tower-based Platform based on Look-up Table
Guo Jian1,2,Liu Liangyun1,2,Liu Xinjie2,Hu Jiaochan2,Jing Xia1
(1.College of Geomatics,Xi’an University of Science and Technology,Xi’an 710054,China;
2.Key Laboratory of Digital Earth Science,Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100094,China)
 全文: PDF(6147 KB)  
摘要:

塔基光谱观测是连接通量站点与卫星遥感数据间的重要桥梁,而水平地表与塔基平台之间大气吸收、散射的作用对O2-A等大气吸收波段的影响难以忽略。首先,分析了大气辐射传输对塔基平台上下行辐射的影响,建立了基于上下行透过率的大气校正方法,即通过直射光透光率和总的透过率校正上下行辐射的影响。其次,利用中分辨率大气传输模型的模拟数据,定量分析550 nm气溶胶光学厚度(Aerosol Optical Depth at 550 nm,AOD550)、辐射传输路径长度对大气透过率的影响,并建立了基于近红外与红光波段下行辐照度比值和太阳天顶角的AOD550查找表(Look-up Table,LUT),以及基于AOD550和辐射传输路径长度的上下行大气透过率LUT。最后,利用塔基平台观测的不同生育期玉米冠层光谱数据,分析了大气校正前后O2-A波段吸收线内外表观反射率的差异。结果表明:基于AOD550和辐射传输路径长度的LUT大气校正方法,可以较好地校正塔基平台O2-A吸收波段大气上下行辐射传输的影响,为塔基平台的日光诱导叶绿素荧光观测等应用提供了重要方法支持。

 

Abstract: Tower-based spectral observation is an important connecting bridge between flux sites and satellite remote sensing data,and the effect of atmospheric absorption and scattering between horizontal surface and tower-based platform on the atmospheric absorption band such as O2-A is difficult to ignore.Firstly,the influence of atmospheric radiation transfer on the up-welling radiance and down-welling irradiance of the tower-based platform is analyzed,and the atmospheric correction method of based on upward and downward transmittance is established,that is,the influence of the upwelling radiance and down-welling irradiance is corrected by the direct transmittance and the total transmittance.Secondly,using the simulation data of MODTRAN model,the influence of AOD550 and radiative transfer path length on atmospheric transmittance is quantitatively analyzed,and the LUT of AOD550 is established based on the ratio of down-welling irradiance of near-infrared and red bands and solar zenith angle,as well as the upward and downward atmospheric transmittance LUT based on the AOD550 and the radiative transfer path length.Finally,using the canopy spectral data of different growth stages observed by the tower-based platform,the difference of the apparent reflectance between the inside and outside of the O2-A band absorption line before and after atmospheric correction was analyzed.The results show that the atmospheric correction method based on LUT of AOD550 and radiative transfer path length proposed in this paper can better correct the influence of upwelling radiance and down-welling on the O2-A absorption band of the tower-based platform,and provides important method support for applications such as SIF observation on the tower platform.
Key words: Tower-based spectral observation    Atmospheric radiation transfer    Atmospheric correction    O2-A band    Aerosol optical depth    Radiative transfer path length    Look-up table
收稿日期: 2018-11-22 出版日期: 2019-07-01
ZTFLH:  TP79  
基金资助: 国家重点研发项目(2017YFC0503803),中国科学院重点部署项目(KFZD-SW-310)。
作者简介: 郭健(1991-),男,江西赣州人,硕士研究生,主要从事植被定量遥感研究。E-mail:rs_guojian@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

郭健, 刘良云, 刘新杰, 胡姣婵, 竞霞. 基于查找表的塔基平台O2-A波段大气校正方法研究[J]. 遥感技术与应用, 2019, 34(3): 467-475.

Guo Jian, Liu Liangyun, Liu Xinjie, Hu Jiaochan, Jing Xia. An O2-A Band Atmospheric Correction Algorithm for Tower-based Platform based on Look-up Table. Remote Sensing Technology and Application, 2019, 34(3): 467-475.

链接本文:

http://www.rsta.ac.cn/CN/doi:10.11873/j.issn.1004-0323.2019.3.0467        http://www.rsta.ac.cn/CN/Y2019/V34/I3/467

<p> [1]Porcar-Castell A,Mac Arthur A,Rossini M,et al.EUROSPEC:At the Interface between Remote-sensing and Ecosystem CO2 Flux Measurements in Europe[J].Biogeosciences,2015,12:6103-6124.[ZK)]<br /> [2]Liu X,Liu L,Hu J,et al.Modeling the Footprint and Equivalent Radiance Transfer Path Length for Tower-based Hemispherical Observations of Chlorophyll Fluorescence[J].Sensors,2017,17(5):1131.doi:10.3390/s17051131.<br /> [3]Daumard F,Champagne S,Fournier A,et al.A Field Platform for Continuous Measurement of Canopy Fluorescence[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(9):3358-3368.<br /> [4]Zhang Y,Wang S,Liu L,et al.Chinaspec:A Network of SIF Observations to Bridge Flux Measurements and Remote Sensing Data[C]∥Proceedings of the American Geophysical Union Fall Meeting,2017,New Orleans,LA,USA,2017.<br /> [5]Xu S,Liu Z,Zhao L,et al.Diurnal Response of Sun-Induced Fluorescence and PRI to Water Stress in Maize Using a Near-Surface Remote Sensing Platform[J].Remote Sensing,2018,10(10):1510.doi:10.3390/rs10101510.<br /> [6]Balzarolo M,Anderson K,Nichol C,et al.Ground-based Optical Measurements at European Flux Sites:A Review of Methods,Instruments and Current Controversies[J].Sensors,2011,11(8):7954-7981.<br /> [7]Eklundh L,Jin H,Schubert P,et al.An Optical Sensor Network for Vegetation Phenology Monitoring and Satellite Data Calibration[J].Sensors,2011,11(8):7678-7709.<br /> [9]Zheng Wei,Zeng Zhiyuan.A Review on Methods of Atmospheric Correction for Remote Sensing Images[J].Remote Sensing Information,2004(4):66-70.[郑伟,曾志远.遥感图像大气校正方法综述[J].遥感信息,2004(4):66-70.]<br /> [10]Qi Xueyong,Tian Qingjiu.The Advances in the Study of Atmospheric Correction for Optical Remote Sensing[J].Remote Sensing for Land & Resources,2005,17(4):1-6.[亓雪勇,田庆久.光学遥感大气校正研究进展[J].国土资源遥感,2005,17(4):1-6.]<br /> [11]Ji Hongxia,Yao Jun,Pan Yanpeng,et al.An Method of Image Haze Removal by Dark Channel Prior for UAV[J].Optics & Optoelectronic Technology,2016,14(5):53-56.[纪红霞,姚军,潘延鹏,等.基于暗通道先验的无人机图像去雾算法研究[J].光学与光电技术,2016,14(5):53-56.]<br /> [12]Wang Zhongting,Li Xiaoying,Li Shenshen,et al.Quickly Atmospheric Correction for GF-1 WFV Cameras[J].Journal of Remote Sensing,2016,20(3):353-360.[王中挺,李小英,李莘莘,等.GF-1星WFV相机的快速大气校正[J].遥感学报,2016,20(3):353-360.]<br /> [13]Hu Yong,Liu Liangyun,Zhang Jiuxing,et al.A TG-1 Hyper-Spectral Imagery Atmospheric Correction based on MODIS Atmosphere Products[J].Remote Sensing Technology and Application,2014,29(6):1060-1066.[胡勇,刘良云,张九星,等.基于MODIS大气产品的天宫一号高光谱成像仪数据大气校正研究[J].遥感技术与应用,2014,29(6):1060-1066.]<br /> [14]Hu Shunshi,Zhang Lifu,She Xiaojun,et al.Design and Interpolation of a General Look-up Table for Remote Sensing Image[J].Journal of Remote Sensing,2014,18(1):45-60.[胡顺石,张立福,佘晓君,等.遥感影像大气校正通用查找表的设计与插值算法[J].遥感学报,2014,18(1):45-60.]<br /> [15]Sabater N,Vicent J,Alonso L,et al.Compensation of Oxygen Transmittance Effects for Proximal Sensing Retrieval of Canopy-Leaving Sun-Induced Chlorophyll Fluorescence[J].Remote Sensing,2018,10(10):1551.doi:10.3390/rs10101551.<br /> [16]Liu X,Liu L.Assessing Band Sensitivity to Atmospheric Radiation Transfer for Space-based Retrieval of Solar-Induced Chlorophyll Fluorescence[J].Remote Sensing,2014,6(11):10656-10675.<br /> [17]Xu Yongming,Qin Zhihao,Chen Aijun.A Pixel-By-Pixel Atmospheric Correction Algorithm for MODIS Data based on Look-Up Table[J].Geomantic and Information Science of Wuhan University,2010,35(8):959-962,1010.[徐永明,覃志豪,陈爱军.基于查找表的MODIS逐像元大气校正方法研究[J].武汉大学学报(信息科学版),2010,35(8):959-962,1010.]<br /> [18]Burrows J P,Weber M,Buchwitz M,et al.The Global Ozone Monitoring Experiment (GOME):Mission Concept and First Scientific Results[J].Journal of the Atmospheric Sciences,1999,56(2):151-175.<br /> [19]Nol S,Buchwitz M,Burrows J P.First Retrieval of Global Water Vapour Column Amounts from SCIAMACHY Measurements[J].Atmospheric Chemistry and Physics,2004,4(1):111-125.<br /> [20]Levy R C,Munchak L,Mattoo S,et al.Towards a Long-Term Global Aerosol Optical Depth Record:Applying a Consistent Aerosol Retrieval Algorithm to MODIS and VIIRS-Observed Reflectance[J].Atmospheric Measurement Techniques,2015,8(10):4083-4110.<br /> [21]Li Xin,Liu Shaomin,Ma Mingguo,et al.Hiwater:An Integrated Remote Sensing Experiment on Hydrological and Ecological Processes in the Heihe River Basin[J].Advances in Earth Science,2012,27(5):481-498.[李新,刘绍民,马明国,等.黑河流域生态—水文过程综合遥感观测联合试验总体设计[J].地球科学进展,2012,27(5):481-498.][22]Guanter L,Alonso L,Gomezchova L,et al.Developments for Vegetation Fluorescence Retrieval from Spaceborne High-Resolution Spectrometry in the O<sub>2</sub>-A and O<sub>2</sub>-B Absorption Bands[J].Journal of Geophysical Research,2010,115(D19):19303.<br /> [23]Tang Yuming,Deng Ruru,Liu Yongming,et al.Research Review of Remote Sensing for Atmospheric Aerosol Retrieval[J].Remote Sensing Technology and Application,2018,33(1):25-34.[汤玉明,邓孺孺,刘永明,等.大气气溶胶遥感反演研究综述[J].遥感技术与应用,2018,33(1):25-34.]<br /> [24]Sun Yuanlong,Shi Guangyu.Detecting Aerosols Over Land Using Combined Channels within the Visible and Near IR Atmospheric Windows[J].Chinese Journal of Atmospheric Sciences,2011,35(2):350-360.[孙源隆,石广玉.利用可见光与近红外大气窗区的组合通道探测陆面上空气溶胶[J].大气科学,2011,35(2):350-360.]<br /> [25]Liu Liangyun,Zhang Yongjiang,Wang Jihua,et al.Detecting Photosynthesis Fluorescence Under Natural Sunlight based on Franchiser Line[J].Journal of Remote Sensing,2006,10(1):130-137.[刘良云,张永江,王纪华,等.利用夫琅和费暗线探测自然光条件下的植被光合作用荧光研究[J].遥感学报,2006,10(1):130-137.] </p>
[1] 肖林 车涛 戴礼云. 多源雪深数据在中国的空间特征评估[J]. 遥感技术与应用, 0, (): 0-0.
[2] 刘鸥阳, 刘良云, 胡姣婵, 刘新杰, 蒋金豹. 基于719 nm水汽吸收波段的日光诱导叶绿素荧光反演研究[J]. 遥感技术与应用, 2019, 34(3): 500-510.
[3] 陈思媛, 竞霞, 董莹莹, 刘良云. 基于日光诱导叶绿素荧光与反射率光谱的小麦条锈病探测研究[J]. 遥感技术与应用, 2019, 34(3): 511-520.
[4] 林中立, 徐涵秋. 近20年来新旧“火炉城市”热岛状况对比研究[J]. 遥感技术与应用, 2019, 34(3): 521-530.
[5] 程志峰, 何祺胜. 基于RSEI的苏锡常城市群生态环境遥感评价[J]. 遥感技术与应用, 2019, 34(3): 531-539.
[6] 李琼琼, 柳云龙. 城市居民区土壤重金属含量高光谱反演研究[J]. 遥感技术与应用, 2019, 34(3): 540-546.
[7] 宋明辉. 基于高分二号数据的面向对象城市土地利用分类研究[J]. 遥感技术与应用, 2019, 34(3): 547-552.
[8] 田慧慧, 冯 莉, 赵璊璊, 郭 松, 董继伟. 无人机热红外城市地表温度精细特征研究 [J]. 遥感技术与应用, 2019, 34(3): 553-563.
[9] 梁丽娟, 黄万里张容焱, 林广发, 彭俊超, 梁春阳. Sentinel-2卫星影像融合方法与质量评价分析[J]. 遥感技术与应用, 2019, 34(3): 612-621.
[10] 张海涛, 金燕, 刘万军. 基于Marr小波改进的SIFT算法的遥感影像配准[J]. 遥感技术与应用, 2019, 34(3): 622-629.
[11] 卢静, 贾立, 郑超磊, 胡光成. 遥感水分收支对区域水资源估算潜能[J]. 遥感技术与应用, 2019, 34(3): 630-638.
[12] 李靖, 李浩, 王树东, 杨莹莹, 吴太夏. 中亚五国主要湖泊水面变化特征及关键影响因素分析[J]. 遥感技术与应用, 2019, 34(3): 639-646.
[13] 徐梦竹, 徐佳, 邓鸿儒, 袁春琦. 基于全极化SAR影像的海岛地物分类[J]. 遥感技术与应用, 2019, 34(3): 647-654.
[14] 许文鑫, 周玉科, 梁娟珠. 基于变化点的青藏高原植被时空动态变化研究 [J]. 遥感技术与应用, 2019, 34(3): 667-676.
[15] 徐凡, 张雪红, 石玉立. 基于激光雷达和航拍影像的城市地物分类研究[J]. 遥感技术与应用, 2019, 34(2): 253-262.