Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (4): 857-864    DOI: 10.11873/j.issn.1004-0323.2019.4.0857
遥感应用     
基于MODIS GPP数据产品的辽宁省碳源/汇空间格局分布研究
冯艾琳1,2(),武晋雯1(),孟莹2,姜鹏2,董巍2,张璇2,方缘2,刘斌2
1. 中国气象局沈阳大气环境研究所,辽宁 沈阳 110166
2. 中国气象局气象干部培训学院辽宁分院,辽宁 沈阳 110166
Research on Spatial Distribution of Carbon Source/Sink of Liaoning Province based on MODIS GPP Data Products
Ailin Feng1,2(),Jinwen Wu1(),Ying Meng2,Peng Jiang2,Wei Dong2,Xuan Zhang2,Yuan Fang2
1. Institute of Atmospheric Environment, China Meteorological Administration, Shenyang 110166, China
2. Liaoning Branch of China Meteorological Administration Training Centre,Shenyang 110166, China
 全文: PDF(6417 KB)   HTML
摘要:

陆地生态系统的碳汇功能是生态系统服务功能的重要方面,在减缓气候变化中起着重要作用,准确地评估陆地生态系统碳源/汇时空变化是有效预测气候变化的重要基础。基于碳源/汇形成过程中各分量间的相互关系,结合MODIS GPP数据产品和区域统计年鉴数据,对2000~2014年辽宁省陆地碳源/汇的强度及空间格局分布进行定量化评估。结果表明:①辽宁省陆地碳源/汇呈现东部高、西部低的变化趋势,东部呈现显著的碳吸收功能,碳吸收强度超过250 gC m-2 a-1,但在辽宁中部、西部及北部地区则出现明显的碳排放。②沈阳的年均碳排放量(1.43 TgC a-1)约占辽宁省各地市净碳排放总量(4.56 TgC a-1)的三分之一,是全省碳排放的主体。③沈阳陆地生态系统总体表现为碳源,城区碳排放强度相对较弱,仅为26 gC m-2 a-1,近似表现为碳中性。本文基于碳源/汇形成过程定量分析辽宁陆地碳源/汇强度及其空间分布规律,为今后其他区域碳源/汇的模拟提供理论依据和方法借鉴。

关键词: MODIS产品生态系统总初级生产力(GPP)辽宁省碳源/汇空间格局分布    
Abstract:

The carbon sink function of terrestrial ecosystem is an important aspect of ecosystem service function, playing an important role in mitigating climate change. Accurate assessment of the spatial and temporal change of carbon source / sink of terrestrial ecosystem is an important basis for predicting climate change effectively. Based on the relationship between all forming fluxes of regional carbon source / sink combining with MODIS GPP data products and regional statistical data, we analyzed the spatial distribution carbon source / sink of Liaoning province from 2000 to 2014. Results show that: ①The spatial distribution of carbon source / sink decreased from eastern to western, with the highest value appearing at the eastern (>250 gC m-2 a-1). There are significant carbon source in the central, western and northern of Liaoning province. ②The total carbon emission of Shenyang(1.43 TgC a-1) accounted for about one third of Liaoning province(4.56 TgC a-1). Therefore, Shenyang is the major city of carbon emission in Liaoning province. ③Shenyang is a carbon source. The urban areas of Shenyang showed a lowest carbon emission (only 26 gC m-2 a-1). This paper conducted regional simulation of carbon source / sink, providing theoretical basis and methodological references for the related studies in other regions.

Key words: MODIS products    Gross Primary Productivity (GPP)    Liaoning province    Carbon source / sink    Spatial distribution
收稿日期: 2018-11-26 出版日期: 2019-10-16
ZTFLH:  TP79  
基金资助: 中国气象局沈阳大气环境研究所开放基金(2017SYIAE02)
通讯作者: 武晋雯     E-mail: fengailin1990@163.com;pipi824@126.com
作者简介: 冯艾琳(1990-),女,辽宁沈阳人,助理工程师,主要从事生态遥感、植被物候研究。E?mail:fengailin1990@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
冯艾琳
武晋雯
孟莹
姜鹏
董巍
张璇
方缘
刘斌

引用本文:

冯艾琳,武晋雯,孟莹,姜鹏,董巍,张璇,方缘,刘斌. 基于MODIS GPP数据产品的辽宁省碳源/汇空间格局分布研究[J]. 遥感技术与应用, 2019, 34(4): 857-864.

Ailin Feng,Jinwen Wu,Ying Meng,Peng Jiang,Wei Dong,Xuan Zhang,Yuan Fang. Research on Spatial Distribution of Carbon Source/Sink of Liaoning Province based on MODIS GPP Data Products. Remote Sensing Technology and Application, 2019, 34(4): 857-864.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.4.0857        http://www.rsta.ac.cn/CN/Y2019/V34/I4/857

图1  陆地生态系统碳循环过程[18]
图2  计算区域陆地碳源/汇所涉及的碳通量
图3  2000~2014年辽宁陆地生态系统碳源/汇及其形成过程中各通量的空间格局分布
图4  辽宁省各地市陆地生态系统碳源/汇强度年均分布
图5  2000~2014年沈阳陆地生态系统碳源/汇及其形成过程中各通量的空间格局分布
区域GPPERNEPCRC碳源/汇
康平1.080.900.180.42-0.20
法库1.271.040.230.57-0.28
新民2.151.760.390.88-0.39
城区2.201.770.430.91-0.38
辽中1.210.970.240.50-0.20
表1  沈阳各区县2000~2014年陆地生态系统碳源/汇及其形成通量总量(T gC/a)
1 TianH Q, LuC Q, CiaisP, et al. The Terrestrial Biosphere as a Net Source of Greenhouse Gases to the Atmosphere[J]. Nature, 2016, 531(7593): 225-228.
2 HanQifei, LuoGeping, LiChaofan, et al. Modeling the Grazing Effect of Grassland on the Carbon Source/Sink in Xinjiang[J]. Acta Ecologica Sinica, 2017, 37(13): 4392-4399.
2 韩其飞,罗格平,李超凡,等. 放牧对新疆草地生态系统碳源/汇的影响模拟研究[J].生态学报,2017,37(13):4392-4399.
3 MaXiaozhe, WangZheng. Progress in the Study on the Impact of Land Use Change on Regional Carbon Sources and Sinks[J]. Acta Ecologica Sinica, 2015, 35(17): 5898-5907.
3 马晓哲,王铮. 土地利用变化对区域碳源汇的影响研究进展[J]. 生态学报,2015,35(17):5898-5907.
4 CiaisP, PeylinP, BousquetP. Regional Biospheric Carbon Fluxes as Inferred from Atmospheric CO2 Measurements[J]. Ecological Applications, 2000, 10(6): 1574-1589.
5 WangJunbang, HuangMei, LinXiaohui. Review on Carbon Budget of the Grassland Ecosystems on the Qinghai-Tibet Plateau[J]. Progress in Geography, 2012, 31(1): 123-128.
5 王军邦, 黄玫, 林小惠. 青藏高原草地生态系统碳收支研究进展[J]. 地理科学进展, 2012, 31(1): 123-128.
6 YinShaohua, ZhouWenpeng. Estimation and Evaluation of Hunan Forest Carbon Sinks[J]. Journal of Central South University of Forestry & Technology, 2013, 33(7): 136-139.
6 尹少华, 周文朋. 湖南省森林碳汇估算与评价[J]. 中南林业科技大学学报, 2013, 33(7): 136-139.
7 BousquetP, PeylinP, CiaisP, et al. Regional Changes in Carbon Dioxide Fluxes of Land and Oceans Since 1980[J]. Science, 2000, 290(5495): 1342-1346.
8 PanY, BirdseyR A, FangJ Y, et al. A Large and Persistent Carbon Sink in the World’s Forests[J]. Science, 2011, 333(6045): 988-993.
9 PiaoS L, FangJ Y, CiaisP, et al. The Carbon Balance of Terrestrial Ecosystems in China[J]. Nature, 2009, 458(7241): 1009-1013.
10 JingM. Chen, Gang Mo, Feng Deng. A Joint Global Carbon Inversion System Using Both CO2 and CO2 Atmospheric Concentration Data[J]. Geoscientific Model Development, 2017, 10(3): 1131-1156.
11 IGBP Terrestrial Carbon Working Group. The Terrestrial Carbon Cycle: Implications for the Kyoto Protocol[J]. Science, 1998, 280(5368): 1393-1394.
12 ZhaoLin, YinMingfang, ChenXiaofei, et al. Summary of the Research Methods of Forest Carbon Sink Accounting[J]. Journal of Northwest Forestry University, 2008, 23(1): 59-63.
12 赵林, 殷鸣放, 陈晓非, 等. 森林碳汇研究的计量方法及研究现状综述[J]. 西北林学院学报, 2008, 23(1): 59-63.
13 TaoB, CaoM K, LiK R, et al. Spatial Patterns of Terrestrial Net Ecosystem Productivity in China During 1981-2000[J]. Science in China Series D-Earth Sciences, 2007, 50(5): 745-753.
14 TianH Q, LuC Q, YangJ, et al. Global Patterns and Controls of Soil Organic Carbon Dynamics as Simulated by Multiple Terrestrial Biosphere Models: Current Status and Future Directions[J]. Global Biogeochemical Cycles, 2015, 29(6): 775-792.
15 ChapinF S, WoodwellG M, RandersonJ T, et al. Reconciling Carbon-cycle Concepts, Terminology, and Methods[J]. Ecosystems, 2006, 9(7): 1041-1050.
16 ZhuX J, ZhangH Q, GaoY N, et al. Assessing the Regional Carbon Sink with Its Forming Processes-A Case Study of Liaoning Province, China[J]. Scientific Reports, 2018, 8(1): 15161.
17 WangQ F, ZhengH, ZhuX J, et al. Primary Estimation of Chinese Terrestrial Carbon Sequestration during 2001~2010[J]. Science Bulletin, 2015, 60(6): 577-590.
18 HanShujie, DongYunshe, CaiZucong, et al. Biogeochemical Processes of Carbon Cycling in Terrestrial Ecosystems in China[M]. Beijing: Science Press, 2008: 117-135.
18 韩士杰, 董云社, 蔡祖聪, 等. 中国陆地生态系统碳循环的生物地球化学过程[M]. 北京: 科学技术出版社, 2008: 117-135.
19 DongFangxiao. Analysis of Estimation Forest Carbon Seqeustration in China: A Case Study of Forest Resources in Liaoning Province[J]. Forestry Economics, 2010(9): 54-57.
19 董方晓. 对我国森林碳汇量的估算与分析: 以辽宁省森林资源为例. 林业经济, 2010(9): 54-57.
20 Xianjin Zhu, Qiufeng Wang, HanZheng, et al. Researches on the Spatio-temporal Variation of Carbon Consumption by Agricultural and Forestry Utilization in Chinese Terrestrial Ecosystems during 2000s[J]. Quaternary Science, 2014b, 34(4): 762-768.
21 YuG R, ZhuX J, FuY L, et al. Spatial Patterns and Climate Drivers of Carbon Fluxes in Terrestrial Ecosystems of China[J]. Global Change Biology, 2013, 19(3): 798-810.
22 ZhuX J, YuG R, HeH L, et al. Geographical Statistical Assessments of Carbon Fluxes in Terrestrial Ecosystems of China: Results from Upscaling Network Observations[J]. Global and Planetary Change, 2014, 118(10): 52-61.
23 GaoTian, XuBin, YangXiuchun, et al. Review of Researches on Biomass Carbon Stock in Grassland Ecosystem of Qinghai-Tibetan Plateau[J]. Progress in Geography, 2012, 31(12):1724-1731.
23 高添, 徐斌, 杨秀春, 等. 青藏高原草地生态系统生物量碳库研究进展[J]. 地理科学进展, 2012, 31(12): 1724-1731.
24 ZhuX J, ZhangH Q, ZhaoT H, et al. Divergent Drivers of the Spatial and Temporal Variations of Cropland Carbon Transfer in Liaoning Province, China[J]. Scientific Reports, 2017, 7(1): 13095.
25 ChenH, ZhuQ, PengC H, et al. Methane Emissions from Rice Paddies Natural Wetlands, Lakes in China: Synthesis New Estimate[J]. Global Change Biology, 2013, 19(1): 19-32.
26 YueY, NiJ R, CiaisP, et al. Lateral Transport of Soil Carbon and Land-atmosphere CO2 Flux Induced by Water erosion in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(24): 6617-6622.
27 ChenZ, YuG R, ZhuX Z, et al. Covariation Between Gross Primary Production and Ecosystem Respiration Across Space and the Underlying Mechanisms: A global Synthesis[J]. Agricultural and Forest Meteorology, 2015, 203(0): 180-190.
28 PiaoS L, LuyssaertS, CiaisP, et al. Forest Annual Carbon Cost: A Global-scale Analysis of Autotrophic Respiration[J]. Ecology, 2010, 91(3): 652-661.
29 ZhangY J, YuG R, YangJ, et al. Climate-driven Global Changes in Carbon Use Efficiency[J]. Global Ecology and Biogeography, 2014, 23(2): 144-155.
[1] 张春玲,余华,宫鹏,居为民. 基于遥感的土地利用空间格局分布与地表温度的关系[J]. 遥感技术与应用, 2008, 23(4): 378-384.
[2] 魏国栓,沈润平,丁国香. 仪征地区农田深层土壤湿度遥感反演初探[J]. 遥感技术与应用, 2008, 23(1): 36-41.