Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (5): 1082-1090    DOI: 10.11873/j.issn.1004-0323.2019.5.1082
降水遥感观测专栏     
FY-4闪电资料在厦门强降水监测预警中的应用
张晓芸1(),魏鸣1(),潘佳文2
1. 气象灾害预报预警与评估协同创新中心,南京信息工程大学,江苏 南京 210044
2. 厦门市气象服务中心,福建 厦门 361012
Application of FY-4 Lightning Data in Monitoring and Warning a Heavy Precipitation in Xiamen on May 7, 2018
Xiaoyun Zhang1(),Ming Wei1(),Jiawen Pan2
1. Collaborative Innovation Center for Weather Disaster Prediction and Assessment,Nanjing University of Information Science and Technology,Nanjing 210044, China
2. Xiamen Meteorological Service Center,Xiamen 361012, China
 全文: PDF(6903 KB)   HTML
摘要:

FY-4上的闪电成像仪(Lightning Mapping Imager,LMI)从静止轨道平台对视场覆盖范围内的闪电进行连续不间断的观测,闪电资料为监测预警强对流天气提供了重要信息。为研究FY-4闪电资料监测预警强对流的能力,以2018年5月7日厦门暴雨为研究个例,利用FY-4闪电资料、FY-4亮温资料、厦门市自动气象站降水资料以及地面闪电定位网监测数据,研究闪电数据在强降水监测预警中的应用。结果表明:FY-4闪电资料与地基闪电进行数据融合,有效减少了天基与地基闪电产品各自数据的不完整性、不确定性和误差;闪电的移动轨迹与对流云团的移动轨迹相符,且在云团移动轨迹的前方;温度梯度较大的区域和深对流内,闪电强度较强;闪电强度与雨强成正比,且闪电频数峰值多出现在降水峰值前45 min左右。

关键词: FY-4静止卫星闪电成像仪闪电强度强降水数据融合    
Abstract:

Research shows that lightning activity is generally ahead of the strong convection center, and strong lightning activity has a good correspondence with heavy precipitation. It is of great significance to apply lightning data in severe weather monitoring on a large scale. A dense network of lightning monitoring stations has been established in China at present, it provides accurate location and frequency of lightning that occurs nearby. But it’s difficult to give a comprehensive lightning distribution image, due to the limit of ground environment. In the field of view from the static orbit platform, the Lightning Mapping Imager (LMI) on FY4 makes up for the lack of ground monitoring and provides important information for severe convective weather monitoring while making continuous and uninterrupted observation of lightning. Taking the rainstorm in Xiamen on May 7, 2018 as a case study, FY-4 bright temperature data, automatic weather station precipitation data and the fusion data of FY-4 lightning data and ground lightning location network data are used to analyze the application of lightning data in monitoring and warning heavy precipitation. The study shows that data fusion of FY-4 lightning data and ground lightning can effectively reduce the incompleteness, uncertainty and error of the respective data of the both. The moving track of lightning is consistent with that of convective cloud, and the former always lies ahead of the latter. The intensity of lightning is stronger in deep convection and areas with large temperature gradient, and it is positively proportional to the intensity of rain. The peak frequency of lightning mostly occurs about 45 minutes before the peak of precipitation.

Key words: FY-4 stationary satellite    Lightning mapping imager    Lightning intensity    Heavy precipitation    Data fusion
收稿日期: 2018-09-07 出版日期: 2019-12-05
ZTFLH:  P457  
基金资助: 国家自然科学基金项目(41675029);国家重点基础研究发展计划973项目(2013CB430102)
通讯作者: 魏鸣     E-mail: 470302152@qq.comn;mingwei@nuist.edu.cn
作者简介: 张晓芸(1995-),女,江苏苏州人,硕士研究生,主要从事大气遥感研究。E?mail:470302152@qq.comn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张晓芸
魏鸣
潘佳文

引用本文:

张晓芸,魏鸣,潘佳文. FY-4闪电资料在厦门强降水监测预警中的应用[J]. 遥感技术与应用, 2019, 34(5): 1082-1090.

Xiaoyun Zhang,Ming Wei,Jiawen Pan. Application of FY-4 Lightning Data in Monitoring and Warning a Heavy Precipitation in Xiamen on May 7, 2018. Remote Sensing Technology and Application, 2019, 34(5): 1082-1090.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.5.1082        http://www.rsta.ac.cn/CN/Y2019/V34/I5/1082

图1  FY-4号卫星在轨状态
波段波长/μm空间分辨率/km通道主要用途
10.471~2小粒子气溶胶,真彩色合成
20.650.5~2植被,图像导航配准恒星观测
30.831-2植被,水面上空气溶胶
41.372卷云
51.612低云/雪识别,水云/冰云判识
62.222~4卷云、气溶胶,粒子大小
73.72(高)2云等高反照率目标,火点
83.72(低)4低反照率目标,地表
96.254高层水汽
107.104中层水汽
118.504总水汽、云
1210.84云、地表温度等
1312.04云、总水汽量,地表温度
1413.54云、水汽
表1  AGRI各波段波长、空间分辨率及主要用途[12]
空间分辨率7.8 km(星下点)
探测器规模400×300×2
中心波长777.4 nm
带宽1 nm±0.1 nm
探测率>90%
虚警率<10%
动态范围>100
信噪比>6
帧频2 ms
量化等级12比特
测量误差10%
表2  FY-4上搭载的LMI的性能指标[12]
图2  厦门市169个气象站点分布
图3  地基天基闪电数据融合流程图
图4  福建省厦门市5月7日强降水分布
图5  天基与地基闪电数据融合结果
图6  云团中心移动路径
图7  对流云团与闪电移动过程
图8  厦门市降水量空间分布与闪电分布
图9  各时段闪电频数与站点峰值降水量
1 Huang Yangang, Gu Songshan, Yang Caiwen, et al. Analysis on the Lightning Characteristics of a Severe Convection Event[J]. Guangdong Meteorology, 2007(3):7-10.黄延刚,顾松山,杨才文,等.一次强对流过程中的闪电特征分析[J].广东气象,2007(3):7-10.
2 Zhang Yijun, Hua Guiyi, Yan Muhong, et al. The Correlation Analysis of Electric Activity,Convection and Precipitation in Convective Cloud and Stratus[J]. Plateau Meteorology, 1995,14(4):13-22.张义军,华贵义,言穆弘,等.对流和层状云系电活动、对流及降水特性的相关分析[J].高原气象,1995,14(4):13-22.
3 Holle R L, Watson A I, López R E, et al. The Life Cycle of Lightning and Severe Weather in a 3-4 June 1985 PRE-STORM Mesoscale Convective System[J]. Monthly Weather Review, 1994, 122(8):1798.
4 Gu Yuan, Wei Ming. The Case Study of Thunderstorm with Lightning Characteristic and Multi-scale Data[J]. Journal of the Meteorological Sciences,2013,33(2):146-152.顾媛,魏鸣.南京一次雷雨的闪电特征与多尺度资料分析[J].气象科学,2013,33(2):146-152.
5 Sun Zhe, Wei Ming. Influence Factors Comparing of Thunderstorm between Spring and Summer in Nanjing[J]. Transactions of Atmospheric Sciences,2016,39(2):260-269.孙哲,魏鸣.春季与夏季两次雷暴大气结构及地闪特征对比[J].大气科学学报,2016,39(2):260-269.
6 Scott C S, John F G, and Richard E O. Warm Season Cloud to Ground Precipitation Relationships in the South-central United States[J]. Weather and Forecasting,1997: 12(3): 449-458.
7 Liu Xiantong, Liu Qi. Study on the Abilities of Discrimination Precipitation from Infrared Brightness Temperature and Cloud Parameters Information[J]. Remote Sensing Technology and Application,2013,28(1):1-11.刘显通,刘奇.红外亮温和云参数信息对降水识别能力的研究[J].遥感技术与应用,2013,28(1):1-11.
8 Liu Yan'an, Wei Ming, Gao Wei, et al. Short-term Automatic Forecast Algorithm of Severe Convective Cloud Identification Using FY-2 IR Image[J]. Journal of Remote Sensing,2012,16(1):79-92.刘延安,魏鸣,高炜,等.FY-2红外云图中强对流云团的短时自动预报算法[J].遥感学报,2012,16(1):79-92.
9 Xiao Xiao, Wei Ming. Study on the Detection and Evolution of Intense Convective Cloud with Data from the FY-2E VISSR Infrared and Water Vapor Bands[J]. Transactions of Atmospheric Sciences,2018,41(1):135-144.肖笑,魏鸣.利用FY-2E红外和水汽波段对强对流云团的识别和演变研究[J].大气科学学报,2018,41(1):135-144.
10 Zhang Yijun, Meng Qing, Ma Ming, et al. Development of Lightning Detection Technique with Application of Lightning Data[J]. Journal of Applied Meteorological Science,2006(5):611-620.张义军,孟青,马明,等.闪电探测技术发展和资料应用[J].应用气象学报,2006(5):611-620.
11 Cao Dongjie, Lu Feng, Zhang Xiaohu, et al. Application of FY-4 Lightning Detection Product in Severe Convection Weather Monitoring[J]. Satellite Application, 2018(11):18-23.曹冬杰,陆风,张晓虎,等.风云四号卫星闪电探测产品在强对流天气监测中的应用[J].卫星应用,2018(11):18-23.
12 Zhang Peng, Guo Qiang, Chen Boyang, et al. The Chinese Next-Generation Geostationary Meteorological Satellite FY-4 Compared with the Japanese Himawari-8/9 Satellites[J]. Advances in Meteorological Science and Technology,2016,6(1):72-75.张鹏,郭强,陈博洋,等.我国风云四号气象卫星与日本Himawari-8/9卫星比较分析[J].气象科技进展,2016,6(1):72-75.
13 Fei Zengping, Wang Hongqing, Zhang Yan, et al. MCS Identification and Tracking based on Geo-satellite IR Images[J]. Journal of Applied Meteorological Science, 2011, 22(1): 115-122.费增坪,王洪庆,张炎,等.基于静止卫星红外云图的MCS自动识别与跟踪[J].应用气象学报,2011, 22(1): 115-122.
14 Duan Lian, Guo Gengchang. Research on Method for MCS Automatic Identification and Tracking based on FY Satellite Cloud Image[J]. Electronic Science and Technology,2016,4:116-119+126.段炼,郭庚常. 风云卫星云图自动识别追踪MCS的方法[J]. 电子科技,2016,4:116-119+126.
15 Shu Yu, Pan Yinong. Self-identification of Mesoscale Convective System from Satellite Infrared Imagery[J]. Journal of Nanjing University(Natural Sciences Edition), 2010(3):337-348.束宇,潘益农. 红外云图上中尺度对流系统的自动识别[J]. 南京大学学报(自然科学版),2010(3):337-348.
16 Huang Yong, Liu Huijuan, Zhai Jing, et al. FY-2E Convective Cloud Detection Method based on Multi-thresholds[J]. Remote Sensing Technology and Application, 2014,29(6):915-922.黄勇,刘慧娟,翟菁,等.基于多阈值的FY-2E对流云识别方法[J]. 遥感技术与应用,2014,29(6):915-922.
17 Qin Danyu, Fang Zongyi. Research Progress of Geostationary Satellite-based Convective Initiation[J].Meteorological Monthly, 2014, (1):7-17.覃丹宇,方宗义.利用静止气象卫星监测初生对流的研究进展[J].气象,2014(1):7-17.
18 Qin Wei. Analysis of Severe Convection Weather in Southeast Coast and Research of the Lightning Nowcasting[D]. Nanjing:Nanjing University of Information Science and Technology,2016.秦微.广东省强对流天气过程分析及闪电临近预警研究[D].南京:南京信息工程大学,2016.
19 Bu Junwei, Zhang Liang, Tian Kun. Analysis of Meteorological Satellite Data of a Lightning Processes in 2009 Summer in Sichuan[J]. Plateau and Mountain Meteorology Research, 2015, 35(3):68-72.卜俊伟,张亮,田琨.2009年四川夏季强雷电过程的气象卫星资料分析[J].高原山地气象研究,2015,35(3):68-72
20 Zhang Qin,Zhang Xiao,Gou Aning, et al. Analysis of Lightning Characteristics of Mesoscale Convective System in Two Strong Convective Weather in Shandong Province[J]. Science Technology and Engineering,2018,18( 28) : 6-14.
20 张琴,张晓,苟阿宁,等.山东两次强对流天气中尺度对流系统的闪电特征分析[J].科学技术与工程,2018,18(28):6-14.
[1] 高书鹏, 史正涛, 刘晓龙, 柏延臣. 基于高时空分辨率可见光遥感数据的热带山地橡胶林识别[J]. 遥感技术与应用, 2018, 33(6): 1122-1131.
[2] 张晓峰, 吕晓琪, 张信雪, 张继凯, 王月明, 谷宇, 樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[3] 王守志,邢立新,仲波,杨爱霞,张福坤,梁敏. 基于Landsat-8 OLI和GF-1 PMS数据融合的铁染蚀变信息提取[J]. 遥感技术与应用, 2016, 31(5): 950-957.
[4] 蔡二丽,窦宝成,彭实,刘强,闻建光. 基于图像融合的反照率产品降尺度方法研究[J]. 遥感技术与应用, 2016, 31(4): 724-730.
[5] 康峻,王力,牛铮,高帅,邬明权 . 基于局部空间自相关分析的时空数据融合[J]. 遥感技术与应用, 2015, 30(6): 1176-1181.
[6] 郭文静,李爱农,赵志强,王继燕. 基于AVHRR和TM数据的时间序列较高分辨率NDVI数据集重构方法[J]. 遥感技术与应用, 2015, 30(2): 267-276.
[7] 王静,李新. 基于作物生长模型和多源数据的融合技术研究进展[J]. 遥感技术与应用, 2015, 30(2): 209-219.
[8] 王桂忠,苗洪利,王鑫,王永强,张杰. 基于共线和交叉点融合数据的高度计海况偏差参数模型的研究[J]. 遥感技术与应用, 2014, 29(1): 176-180.
[9] 黄永喜,李晓松,吴炳方,董泰锋. 基于改进的ESTARFM数据融合方法研究[J]. 遥感技术与应用, 2013, 28(5): 753-760.
[10] 曹广真,张鹏,陈林,郑照军,胡秀清. 地面能见度观测在卫星遥感IDDI指数中的融合应用[J]. 遥感技术与应用, 2013, 28(4): 588-593.
[11] 蔡德文,牛铮,王力. 遥感数据时空融合技术在农作物监测中的适应性研究[J]. 遥感技术与应用, 2012, 27(6): 927-932.
[12] 邹丽丽, 崔海山, 李颖, 吴宇静. SAR与SPOT数据融合方法研究[J]. 遥感技术与应用, 2010, 25(6): 836-841.
[13] 闻建光, 许惠平, 刘万崧. 基于遥感影像的校园地理信息系统[J]. 遥感技术与应用, 2005, 20(2): 304-308.
[14] 贾永红,李德仁,孙家柄. 多源遥感影像数据融合[J]. 遥感技术与应用, 2000, 15(1): 41-44.