Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (5): 901-913    DOI: 10.11873/j.issn.1004-0323.2019.5.0901
林业遥感专栏     
三维遥感机理模型RAPID原理及其应用
黄华国()
北京林业大学 省部共建森林培育与保护教育部重点实验室, 北京 100083
Principles and Applications of the Three-dimensional Remote Sensing Mechanism Model RAPID
Huaguo Huang()
The Key Laboratory for Silviculture and Conservation of Ministry of Education Beijing Forestry University, Beijing 100083, China
 全文: PDF(11743 KB)   HTML
摘要:

三维遥感机理模型是开展定量遥感反演教学和新方法试验的重要工具。介绍全波段多传感器三维遥感机理模型RAPID的原理、输入输出和常见应用方法。RAPID模型基于辐射度(Radiosity)理论和计算机图形学算法,提出了针对植被的孔隙面元(Porous individual object)概念,大幅降低三维辐射传输的计算量;并将模拟能力扩展到光学、热红外和微波波段,实现反射率、亮度温度、点云、波形和后向散射系数的统一模拟。RAPID非常适合定量遥感教学、简单模型验证、复杂场景模拟和多源数据融合探索。全面介绍全波段多传感器三维遥感机理模型RAPID的原理、输入输出和常见应用方法。

关键词: RAPID辐射度三维辐射传输全波段统一模型    
Abstract:

Three-dimensional (3D) remote sensing mechanism model is an important tool for teaching quantitative remote sensing inversion and conducting virtual experiments on new methods. Based on Radiosity theory and computer graphics algorithms, the RAPID model proposed the concept of porous individual object for vegetation, which greatly reduced the calculation of 3D radiation transfer. The simulation ability of RAPID has been extended from optical, thermal infrared to microwave bands to achieve the unified simulation of reflectivity, brightness temperature, point cloud, waveform and backscattering coefficient. RAPID is very suitable for quantitative remote sensing teaching, simple model validation, complex scene simulation and multi-source data fusion exploration. This paper generally introduced the principle, input and output as well as common application methods of RAPID, the full-band and multi-sensor 3D remote sensing mechanism model.

Key words: RAPID    Radiosity    3D Radiative transfer    Full spectrum    Unified model
收稿日期: 2019-04-20 出版日期: 2019-12-05
ZTFLH:  S771.8  
基金资助: 国家自然科学基金项目“耦合害虫胁迫的森林热红外遥感信息模型研究”(41571332);国家重点研发计划项目“大兴安岭火烧及采伐迹地植被恢复遥感监测及其辅助决策技术”(2017YFC0504003-4)
作者简介: 黄华国(1978?),男,湖北荆门人,教授,博士生导师,主要从事植被定量遥感方面的研究。Email :huaguo_huang@bjfu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄华国

引用本文:

黄华国. 三维遥感机理模型RAPID原理及其应用[J]. 遥感技术与应用, 2019, 34(5): 901-913.

Huaguo Huang. Principles and Applications of the Three-dimensional Remote Sensing Mechanism Model RAPID. Remote Sensing Technology and Application, 2019, 34(5): 901-913.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.5.0901        http://www.rsta.ac.cn/CN/Y2019/V34/I5/901

图1  通用辐射度架构
图2  包含树干、孔隙面元、建筑、土壤的三维场景及其观测几何
图3  基于计算机图形学估算方向形状因子
图4  RAPID全波段多传感器统一模拟框架
图5  RAPID软件图形用户界面GUI
图6  RAPID的输入框架
图7  利用RAPID模型耦合多源数据的时序图像模拟框架
图8  模拟图像和CCD图像的对比 (0.5 m)
图9  对比模拟图像和真实Landsat的假彩色合成图像(RGB=[近红外,红,绿]); A和B代表白桦和落叶松
图10  高斯地形坡度对BRF的影响
图11  地形校正效果
图12  多传感器统一模拟
参数取值范围平均值
树高/m6~2616
LAI1.0~5.03
株数密度/(株/hm2400~800600
表1  模拟输入的结构和水分参数
图13  混交林(50°入射角)的反射率及后向散射系数(HH极化)对树高、LAI和株数密度的响应
阔叶林混交林热带雨林
冠幅/m0.153×H +0.784
冠层高/m0.559×H -1.328
胸径/cm1.332×H +4.29
枝下高/m0.559×H-1.328
枝条密度(number/m3)S×8S×16S×32
枝条半径(cm)0.333×H-1.082
表2  基于树高H和林分株数密度S的相关生长方程
图14  地表火冠层顶部观测模拟(b,e)均为假彩色合成图像(3.5 μm、10 μm、12 μm)
1 Meroni M, Colombo R, Panigada C. Inversion of a Radiative Transfer Model with Hyperspectral Observations for LAI Mapping in Poplar Plantations[J]. Remote Sensing of Environment, 2004,92:195-206.
2 Celesti M,van der Tol C,Cogliati S,et al. Exploring the Physiological Information of Sun-induced Chlorophyll Fluorescence Through Radiative Transfer Model Inversion[J].Remote Sensing of Environment, 2018,215:97-108.
3 Punalekar M S A, Verhoef T L, et al. Application of Sentinel-2A Data for Pasture Biomass Monitoring Using a Physically based Radiative Transfer Model[J]. Remote Sensing of Environment,2018,218:207-220.
4 Wang Z, Skidmore Z K, Darvishzadeh D, et al. Mapping forest Canopy Nitrogen Content by Inversion of Coupled Leaf-canopy Radiative Transfer Models from Airborne Hyperspectral Imagery[J]. Agricultural and Forest Meteorology,2018, 253-254: 247-260.
5 Kimes D, Gastellu-Etchegorry J, Estève P, Recovery of forest Canopy Characteristics Through Inversion of a Complex 3D Model[J]. Remote Sensing of Environment,2002,79: 320-328.
6 Ferreira M P, Féret J B, Grau E, et al. Retrieving Structural and Chemical Properties of Individual Tree Crowns in a Highly Diverse Tropical Forest with 3D Radiative Transfer Modeling and Imaging Spectroscopy[J]. Remote Sensing of Environment, 2018, 211:276-291.
7 Hedley J, Russell B, Randolph K, et al. A Physics-based Method for the Remote Sensing of Seagrasses[J]. Remote Sensing of Environment,2016,174:134-147.
8 Hernández-Clemente R, North P R J, Hornero A, et al. Assessing the Effects of Forest Health on Sun-induced Chlorophyll Fluorescence Using the FluorFLIGHT 3-D Radiative transfer Model to Account for Forest Structure[J]. Remote Sensing of Environment, 2017, 193:165-179.
9 Bye I J, North P R J, Los S O, et al. Estimating Forest Canopy Parameters from Satellite Waveform LiDAR by Inversion of the FLIGHT Three-dimensional Radiative Transfer Model[J]. Remote Sensing of Environment, 2017,188: 177-189.
10 Zarco-Tejada P J, Hornero A, Hernández-Clemente R, et al. Understanding the Temporal Dimension of the Red-edge Spectral Region for Forest Decline Detection Using High-resolution Hyperspectral and Sentinel-2A Imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 137:134-148.
11 Xu X R, Fan W J, Li J C, et al. A Unified Model of Bidirectional Reflectance Distritution Function for the Vegetation Canopy[J]. Science China(Earth Sciences),2017,60(3):463-477.
12 Gastellu-Etchegorry J P, Lauret N, Yin T, et al. DART: Recent Advances in Remote Sensing Data Modeling with Atmosphere, Polarization, and Chlorophyll Fluorescence[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017,25: 1-10.
13 Pottier E, Ferro-Famil L, Allain S, et al. Overview of the PolSARpro V4.0 software. The Open Source Toolbox for Polarimetric and Interferometric Polarimetric SAR Data Processing[C]∥ Geoscience & AMP; Remote Sensing Symposium, 2009.
14 Tao Z, Cheng H, Sun H, et al. A Novel Rapid SAR Simulator based on Equivalent Scatterers for Three-dimensional Forest Canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52: 5243-5255.
15 Disney M, Lewis P, Saich P. 3D Modelling of Forest Canopy Structure for Remote Sensing Simulations in the Optical and Microwave Domains[J]. Remote Sensing of Environment, 2006, 100: 114-132.
16 Huang H, Zhang Z, Ni W, et al. Extending RAPID Model to Simulate Forest Microwave Backscattering[J]. Remote Sensing of Environment, 2018, 217:272-291.
17 Rushmeier H E, Torrance K E. Extending the Radiosity Method to Include Specularly Reflecting and Translucent Materials[J]. Acm Transactions on Graphics, 1990, 9: 1-27.
18 Huang H, Qin W, Liu Q. RAPID: A Radiosity Applicable to Porous IndiviDual Objects for Directional Reflectance over Complex Vegetated Scenes[J]. Remote Sensing of Environment, 2013, 132:221-237.
19 Huang H G, Lian J. A 3D Approach to Reconstruct Continuous Optical Images Using LiDAR and MODIS[J]. Forest Ecosystems, 2015, 2:20. doi:10.1186/540663-015-0044-5.
doi: 10.1186/540663-015-0044-5
20 Huang H. Accelerated RAPID Model Using Heterogeneous Porous Objects[J]. Remote Sensing,2018, 10:1264. doi:10.3390/rs10081264.
doi: 10.3390/rs10081264
21 Wang C, Qi J. Biophysical Estimation in Tropical Forests Using JERS‐1 SAR and VNIR Imagery. II. Aboveground Woody Biomass[J]. International Journal of Remote Sensing, 2008, 29: 6827-6849.
22 Huang H, Wynne R H. Simulation of LiDAR Waveforms with a Time-dependent Radiosity Algorithm[J]. Canadian Journal of Remote Sensing, 2013, 39:S126-S138.
23 Bian Z, Cao B, Li H, et al. Modeling the Distributions of Brightness Temperatures of a Cropland Study Area Using a Model that Combines Fast Radiosity and Energy Budget Methods[J]. Remote Sensing, 2018, 10:736. doi:10.3390/rs10030736.
doi: 10.3390/rs10030736
[1] 胡瑞,肖鹏峰,冯学智,张学良. 玛纳斯河流域积雪区GF-1卫星图像辐射质量比较[J]. 遥感技术与应用, 2018, 33(1): 47-54.