Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (6): 1146-1154    DOI: 10.11873/j.issn.1004-0323.2019.6.1146
冰雪遥感专栏     
青藏高原融雪期积雪反照率特性分析
张正(),肖鹏峰(),张学良,冯学智,杨永可,胡瑞,盛光伟,刘豪
南京大学地理与海洋科学学院地理信息科学系,江苏省地理信息技术重点实验室,卫星测绘技术与应用国家测绘地理信息局重点实验室,江苏 南京 210023
Analysis of the Characteristics of Snow Albedo during the Snowmelt Period of the Qinghai-Tibet Plateau
Zheng Zhang(),Pengfeng Xiao(),Xueliang Zhang,Xuezhi Feng,Yongke Yang,Rui Hu,Guangwei Sheng,Hao Liu
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Satellite Mapping Technology and Applications of State Administration of Surveying, Mapping and Geoinformation of China, Department of Geographic Information Science, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
 全文: PDF(3760 KB)   HTML
摘要:

积雪反照率是影响地—气辐射能量平衡的重要地表参数之一。结合青藏高原的积雪消融特点,研究了2018年2~3月青藏高原28个观测点的反照率空间差异,并分析了影响反照率的表层积雪参数,结果表明:融雪期青藏高原的积雪反照率均值为0.72,高原东北部的青海地区观测点的反照率均值高于西藏南部地区,不同区域积雪反照率值内部差异不同;西藏南部地区的水汽来源和较快的积雪消融过程导致该区域反照率低于青海地区;地表被斑状雪覆盖的观测点具有较低的反照率值(小于0.5);多云天气条件下,短时间的云层遮挡对反照率影响很小,积雪反照率几乎保持不变。

关键词: 青藏高原融雪期积雪反照率空间差异影响因素    
Abstract:

Snow albedo is one of the important surface parameters affecting the balance of ground-air radiation energy. Based on the characteristics of snow deposition in the Qinghai-Tibet Plateau, this paper studies the spatial differences of albedo from 28 observation points in the Qinghai-Tibet Plateau from February to March 2018, and analyzes the surface snow parameters affecting the albedo. The results show that during the snowmelt period of the Qinghai-Tibet Plateau, the average albedo of snow cover is 0.72. The albedo of the observation points in Qinghai area of the northeastern part of the plateau is higher than that in southern Tibet. The internal differences of snow albedo in different areas are different. The source of water vapor in southern Tibet and the faster snow melting process leads to the albedo in this area being lower than that in Qinghai. The observation points covered by patchy snow on the surface have lower albedo values (less than 0.5). In cloudy weather, short-term cloud occlusion has little effect on albedo, which remains almost unchanged.

Key words: Qinghai-Tibet Plateau    Snowmelt period    Snow albedo    Spatial difference    Influencing factors
收稿日期: 2018-07-12 出版日期: 2020-03-23
ZTFLH:  P343.6  
基金资助: 国家科技基础资源调查专项课题(2017FY100502);国家自然科学基金项目(41671344)
通讯作者: 肖鹏峰     E-mail: zzg2017@foxmail.com;xiaopf@nju.edu.cn
作者简介: 张 正(1995-),男,江苏宿迁人,硕士研究生,主要从事积雪遥感研究。E?mail:zzg2017@foxmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张正
肖鹏峰
张学良
冯学智
杨永可
胡瑞
盛光伟
刘豪

引用本文:

张正,肖鹏峰,张学良,冯学智,杨永可,胡瑞,盛光伟,刘豪. 青藏高原融雪期积雪反照率特性分析[J]. 遥感技术与应用, 2019, 34(6): 1146-1154.

Zheng Zhang,Pengfeng Xiao,Xueliang Zhang,Xuezhi Feng,Yongke Yang,Rui Hu,Guangwei Sheng,Hao Liu. Analysis of the Characteristics of Snow Albedo during the Snowmelt Period of the Qinghai-Tibet Plateau. Remote Sensing Technology and Application, 2019, 34(6): 1146-1154.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.6.1146        http://www.rsta.ac.cn/CN/Y2019/V34/I6/1146

图1  反照率观测点分布
点号测量日期测量时间反照率经度/°E纬度/°N高程/m下垫面类型天气雪深/cm积雪覆盖度
12018/2/2016:200.74101.85035.2283 509裸地阴天4.5100%
22018/2/2017:500.79101.72535.1403 594草地阴天6.0100%
32018/2/219:500.78101.58334.8073 529草地晴天8.2100%
42018/2/2111:100.79101.54634.8003 541草地晴天8.5100%
52018/2/2210:500.4899.24233.6814 099草地晴天8.350%
62018/2/2310:560.6698.65035.0594 381草地多云44.0100%
72018/2/249:480.7897.23633.4854 288草地阴天7.3100%
82018/2/2410:500.8497.18933.6564 358草地多云7.7100%
92018/2/2411:580.7297.14833.6514 410草地多云5.390%
102018/2/2414:510.8397.19233.6244 326冰面阴天5.2100%
112018/2/2416:090.8897.47033.2004 413草地阴天6.8100%
122018/2/2511:440.6997.24133.4734 269冰面多云7.5100%
132018/2/2512:590.7697.23533.4864 285草地晴天9.790%
142018/2/2517:090.6098.12934.7604 239草地多云11.3100%
152018/2/2610:530.6698.65435.0524 371草地阴天21.0100%
162018/2/2611:410.8298.67235.0584 440草地多云10.5100%
172018/2/2612:210.6898.73735.0664 367冰面多云6.390%
182018/3/315:220.7392.01128.8394 869草地多云7.790%
192018/3/412:320.7391.87727.9274 484裸地阴天18.5100%
202018/3/413:280.7191.92227.9764 406草地多云16.090%
212018/3/614:150.7789.05227.6534 189草地多云19.590%
222018/3/615:120.7989.14227.6994 259草地多云9.7100%
232018/3/616:020.7889.17827.8384 542草地晴天9.8100%
242018/3/617:000.7889.25828.0124 479草地多云8.5100%
252018/3/810:330.4686.06928.3594 226裸地晴天6.740%
262018/3/811:110.5486.09828.3714 290草地晴天10.050%
272018/3/812:090.6586.16928.5175 097草地晴天5.550%
282018/3/812:400.7386.15528.5654 909草地晴天14.190%
表 1  观测点信息
图2  观测点的反照率值及6个区域的反照率对比
图 3  青藏高原的斑状雪示例
图4  反照率与天气状况
图5  6个区域的反照率与表层积雪参数
1 Tian Liuxi,Li Weizhong,Zhang Yao,et al. The Analysis of Snow Information from 1979 to 2007 in Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica,2014,34(20): 5974-5983.
1 田柳茜, 李卫忠, >张尧,等. 青藏高原1979-2007年间的积雪变化[J]. 生态学报, 2014, 34(20): 5974-5983.
2 Cheng Guodong. Glaciology and Geocryology of China in the Past 40 Years: Progress and Prospect[J]. Journal of Glaciology and Geocryology, 1998,20(3):21-34.
2 程国栋. 中国冰川学和冻土学研究40年进展和展望[J].冰川冻土,1998,20(3):21-34.
3 Wang Shunjiu. Progresses in Variability of Snow Cover over the Qinghai-tibetan Plateau and Its Impact on Water Resources in China[J].Plateau Meteorology,2017,36(5):1153-1164.
3 王顺久. 青藏高原积雪变化及其对中国水资源系统影响研究进展[J].高原气象,2017,36(5):1153-1164.
4 Flanner M G, Zender C S. Snowpack Radiative Heating: Influence on Tibetan Plateau Climate[J]. Geophysical Research Letters, 2005, 32, L06501. doi:10.102912004GL022076.
doi: 10.102912004GL022076
5 Zhang Y, Li T, Wang B. Decadal Change of the Spring Snow Depth over the Tibetan Plateau: The Associated Circulation and Influence on the East Asian Summer Monsoon[J]. Journal of Climate, 2004, 17(14): 2780-2793.
6 Pu Z, Xu L. MODIS/Terra Observed Snow Cover over the Tibet Plateau: Distribution, Variation and Possible Connection with the East Asian Summer Monsoon (EASM)[J]. Theoretical and Applied Climatology, 2009, 97(3-4): 265-278.
7 Li W K, Guo W D, Qiu B, et al. Influence of Tibetan Plateau Snow Cover on East Asian Atmospheric Circulation at Medium-range Time Scales[J]. Nature Communications, 2018, 9(1): 4243.doi:10.1038/S41467-018-06762-5.
doi: 10.1038/S41467-018-06762-5
8 Gao R, Zhong H L, Dong W J, et al. Characteristics of Abrupt Changes of Snow Cover and Seasonal Freeze-thaw Layer in the Tibetan Plateau and Their Impacts on Summer Precipitation in China[J]. Sciences in Cold and Arid Regions, 2011, 3(1): 24-30.
9 Ma Yaoming,Yao Tandong,Wang Jiemin. Experimental Study of Energy and Water Cycle in Tibetan Plateau-The Progress Introduction on the Study of GAME/Tibet and CAMP/Tibet[J]. Plateau Meteorology, 2006, 25(2):344-351.
9 马耀明, 姚檀栋, 王介民. 青藏高原能量和水循环试验研究—GAME/Tibet与CAMP/Tibet研究进展[J]. 高原气象, 2006, 25(2):344-351.
10 Li Peiji. Dynamic Characteristic of Snow Cover in Western China[J].Acta Geographica Sinca, 1993,60(6):505-515.
10 李培基. 中国西部积雪变化特征[J].地理学报,1993,60(6):505-515.
11 Cao Meisheng. Computation of Net Radition over the Qinghai-Xizang Plateau in Winter Under Snow Cover[J]. Plateau Meteorology, 1998,17(4):40-47.
11 曹梅盛. 青藏高原雪盖与冬季地表净辐射[J].高原气象,1998,17(4):40-47.
12 Shen Zhibao,Liu Weimin. Surface Radition Balance over Qinghai-Xizang Plateau in Winter[J]. Plateau Meteorology, 1988,7(1):1-8.
12 沈志宝, 刘卫民. 冬季青藏高原地面辐射平衡[J].高原气象,1988,7(1):1-8.
13 Weng D M. Some Major Features of Surface Net Radition in the Qinghai-Xizang Plateau[J].Journal of Nanjing Insititute of Meteorology,1991(1):1-8.
14 Bian Qingyun,Shihua Lü,Wen Lijuan,et al.Soil Freezing-thawing Process and Its Temperature and Moisture Conditions in High and Low Snowfall Years in Headwaters of the Yellow River[J].Arid Zone Research,2017,34(4):906-911.
14 边晴云, 吕世华, 文莉娟,等. 黄河源区不同降雪年土壤冻融过程及其水热分布对比分析[J].干旱区研究,2017,34(4):906-911.
15 Stroeve J, Box J E, Gao F, et al. Accuracy Assessment of the MODIS 16-day Albedo Product for Snow: Comparisons with Greenland in Situ Measurements[J]. Remote Sensing of Environment, 2005, 94(1): 46-60.
16 Wei Zhigang,Shihua Lü. Distrbution of Snow Cover on the Qinghai-Xizang Plateau and Its Influence on Surface Albedo[J].Plateau Meteorology,1995,14(1):67-73.
16 韦志刚, 吕世华. 青藏高原积雪的分布特征及其对地面反照率的影响[J].高原气象,1995,14(1):67-73.
17 Jiang Xi. Progress in the Research of Snow and Ice Albedo[J]. Journal of Glaciology and Geocryology, 2006,28(5):728-738.
17 蒋熹. 冰雪反照率研究进展[J].冰川冻土,2006,28(5):728-738.
18 Guo D, Sun J, Yang K,et al. Satellite Data Reveal Southwestern Tibetan Plateau Cooling Since 2001 due to Snow-albedo Feedback[J]. International Journal of Climatology,2019:1-12. doi:10.1002/joc.6292.
doi: 10.1002/joc.6292
19 Shao Donghang, Li Hongyi, Wang Jian,et al. Retrieval of Snow Albedo based on Multi-source Remote Sensing Data[J]. Remote Sensing Technology and Application2017,32(1):71-77.
19 邵东航,李弘毅,王建,等.基于多源遥感数据的积雪反照率反演研究[J].遥感技术与应用,2017,32(1):71-77.
20 Liu L, Ma Y, Menenti M, et al. Evaluation of WRF Modeling in Relation to Different Land Surface Schemes and Initial and Boundary Conditions: A Snow Event Simulation Over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(1): 209-226.
21 Zhou Minqiang,Wang Yunlong,Liang Hui,et al.Comparative Analysis of the Snow Coverage Products of Soumi-NPP and MODIS in the Qinghai-Tibet Plateau[J].Journal of Glaciology and Geocryology,2019,41(1):36-44.
21 周敏强, 王云龙, 梁慧,等. 青藏高原Soumi-NPP和MODIS积雪范围产品的对比分析[J].冰川冻土,2019,41(1):36-44.
22 Wu Xuejiao,Lu Anxin,Wang Lihong,et al. Spatial and Temporal Distribution and Trend of Snow Albedo Changes in the Source Region of theYangtze River in Last Decade based on MODIS[J]. Scientia Gegraphica Sinica,2013,33(3):371-377.
22 吴雪娇, 鲁安新, 王丽红,等. 基于MODIS的长江源近10年积雪反照率时空分布及动态变化[J].地理科学,2013,33(3):371-377.
23 Zhu Yuxiang. Influence of Snow over the Tibetan Plateau in Winter and Spring on Summer Rainfall Distribution in China[D].Nanjing: Nanjing University of Information Science & Technology,2007
23 朱玉祥. 青藏高原冬春积雪对我国夏季降水分布的影响研究[D].南京:南京信息工程大学, 2007.
24 Li Chunhui,He Chao,Wan Qilin.The Thermal Effect of The Tibetan Plateau on The Summer Climate of The South China Sea Surrounding Areas[J]. Journal of Tropical Meteorology,2019,35(2):268-280.
24 李春晖, 何超, 万齐林. 青藏高原热力作用对南海及周边区域夏季气候的影响研究进展[J]. 热带气象学报, 2019, 35(2):268-280.
25 Chen A J, Hu S S,Bian L G, et al. An Assessment on the Accuracy of the GLASS Albedo Products over the Tibetan Plateau[J]. Acta Meteorologica Sinica,2015,73(6):1114-1120.
26 Liang Xuewei. Analysis and Improvement of MODIS Albedo Retrieval Quality over the Tibetan Plateau[D]. Nanjing:Nanjing University of Information Science & Technology,2015.
26 梁学伟. 青藏高原MODIS地表反照率反演质量分析与改进研究[D]. 南京:南京信息工程大学,2015.
27 An Yingying,Meng Xianhong,Zhao Lin,et al.Evaluation the Applicability of Albedo Products of GLASS,MODIS and GlobAlbedo under the Alpine Meadow over the Qinghai-Tibetan Plateau[J].Plateau Meteorology,2019,38(1):88-100.
27 安颖颖, 孟宪红, 赵林,等. GLASS、MODIS和GlobAlbedo反照率产品在青藏高原典型高寒草地的适用性评估[J].高原气象,2019,38(1):88-100.
28 China Statistics Press. Social and Economic Statistical Yearbook of Tibet[Z],1989.
28 中国统计出版社.西藏社会经济统计年鉴[Z],1989.
29 O'Neill A D J, Gray D M. Solar Radiation Penetration Through Snow[C]//The Role of Snow and Ice in Hydrology, Proceedings of the Banff Symposium, International Association of Hydrological Sciences, 1972, 107: 227-240.
30 Chen Kai. Research on Freeze-thaw Process and Side Oozing Flow of Snowmelt in the Snow[D].Urumqi: Xinjiang University,2012.
30 陈凯. 融雪水在雪层中的冻融过程及侧渗出流研究[D].乌鲁木齐:新疆大学, 2012.
31 Hao Xiaohua,Wang Jie,Wang Jian,et al. The Measurement and Retrieval of the Spectral Reflectance of Different Snow Grain Size on Northern Xinjinag,China[J]. Spectroscopy and Spectral Analysis,2013,33(1):190-195.
31 郝晓华, 王杰, 王建,等. 北疆地区不同雪粒径光谱特征观测及反演研究[J].光谱学与光谱分析,2013,33(1):190-195.
32 Ingvander S, Johansson C, Jansson P, et al. Comparison of Digital and Manual Methods of Snow Particle Size Estimation[J]. Hydrology Research, 2012, 43(3): 192-202.
33 Fierz C, Armstrong R L, Durand Y, et al. The International Classification for Seasonal Snow on the Ground[M]. Paris: UNESCO/IHP, 2009.
[1] 黄桂平,曹艳萍. TRMM卫星3B43降水数据在黄河流域的精度分析[J]. 遥感技术与应用, 2019, 34(5): 1111-1120.
[2] 许文鑫, 周玉科, 梁娟珠. 基于变化点的青藏高原植被时空动态变化研究 [J]. 遥感技术与应用, 2019, 34(3): 667-676.
[3] 孙红, 田昕, 闫敏, 李增元, 陈尔学, 孙珊珊, 王崇阳. 内蒙古大兴安岭根河植被覆盖度动态变化及影响因素的分析[J]. 遥感技术与应用, 2018, 33(6): 1159-1169.
[4] 张博, 吴立宗. 基于Spark的分布式青藏高原MODIS LST插值方法实现研究[J]. 遥感技术与应用, 2018, 33(6): 1178-1185.
[5] 周玉科,刘建文. 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析[J]. 遥感技术与应用, 2018, 33(3): 486-498.
[6] 陈思宇,巩垠熙,梁天刚. 星载激光雷达在青藏高原湖泊变迁中的应用研究[J]. 遥感技术与应用, 2018, 33(2): 351-359.
[7] 郝建盛,张飞云,赵鑫,刘云霄,李兰海. 基于GRACE监测数据的伊犁—巴尔喀什湖盆地水储量变化特征及影响因素[J]. 遥感技术与应用, 2017, 32(5): 883-892.
[8] 马敏娜,袁文平. 青藏高原总初级生产力估算的模型差异[J]. 遥感技术与应用, 2017, 32(3): 406-418.
[9] 王丽娟,郭铌,王玮,芦亚玲,沙莎. 基于TESEBS模型估算高原地区地表蒸散发[J]. 遥感技术与应用, 2017, 32(3): 507-513.
[10] 黄田进,梁丁丁,贾立,张静潇,卢静,周杰. 青藏高原地区湖泊面积插补迭代自动提取#br#[J]. 遥感技术与应用, 2017, 32(2): 289-298.
[11] 杨志刚,达娃,除多. 近15 a青藏高原积雪覆盖时空变化分析[J]. 遥感技术与应用, 2017, 32(1): 27-36.
[12] 邵东航,李弘毅,王建,郝晓华,王润科,马媛. 基于多源遥感数据的积雪反照率反演研究[J]. 遥感技术与应用, 2017, 32(1): 71-77.
[13] 周春艳,厉青,张丽娟,马鹏飞,陈辉,王中挺. 遥感监测2005~2015年中国NO2时空特征及分析影响因素[J]. 遥感技术与应用, 2016, 31(6): 1190-1200.
[14] 安培浚,高峰,王立伟. 青藏高原冰川、积雪与地质灾害空间观测研究态势分析[J]. 遥感技术与应用, 2016, 31(6): 1223-1230.
[15] 王玉丹,南卓铜,陈浩,吴小波. 基于K 最近邻模型的青藏高原CMORPH日降水数据的订正研究[J]. 遥感技术与应用, 2016, 31(3): 607-616.