Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (6): 1212-1220    DOI: 10.11873/j.issn.1004-0323.2019.6.1212
定标专栏     
星载微波大气湿度探测仪再定标共性技术分析
李娇阳1,2(),王振占1(),谷松岩3,张升伟1
1.中国科学院国家空间科学中心微波遥感技术重点实验室,北京 100190
2.中国科学院大学,北京 100049
3.中国气象局国家卫星气象中心,北京 100081
Common Re-calibration Technology for Spaceborne Microwave Atmospheric Humidity Sounder
Jiaoyang Li1,2(),Zhenzhan Wang1(),Songyan Gu3,Shengwei Zhang1
1.Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China
 全文: PDF(481 KB)   HTML
摘要:

探测大气水汽的星载微波大气湿度探测仪是国内外气象卫星上的关键载荷之一。多台星载微波大气湿度探测仪观测数据构成的长时间序列数据集在天气预报、数据同化和全球气候监测与评估中有着非常重要的作用。由于微波辐射没有绝对基准,并且不同卫星平台上的微波大气湿度探测仪的系统响应特性和定标方法不尽相同,因此,再定标是提高多台星载微波大气湿度探测仪的长时间序列观测数据的长期一致性和稳定性的关键技术。我国的四台星载微波大气湿度探测仪自2008年以来已经积累了超过10 a的重要观测数据集,亟待通过再定标技术实现4台载荷在轨历史观测数据长期一致性和稳定性并有效应用。为此,详细总结了国内外星载微波大气湿度探测仪研究现状,并对国内外星载微波大气湿度探测仪再定标共性技术研究现状进行总结分析,然后给出我国星载微波大气湿度探测仪再定标方案的构想,为再定标处理提供关键共性技术参考。

关键词: 星载微波大气湿度探测仪再定标一致性共性技术    
Abstract:

The Spaceborne Microwave Humidity Sounder is an important payload of a meteorological satellite, which can detect the atmospheric humidity. The long-term observation data of several sounders can provide important support for meteorological forecast, data assimilation and global climate change monitoring. Due to the lack of absolute reference for microwave radiation and the difference between the characteristics and the calibration method between each sounder, re-calibration is an important technology for obtaining long-term consistent and stable observation data. Since 2008, China has launched 4 spaceborne microwave humidity sounder onboard the Fengyun-3 series meteorological satellites. There are more than 10 years observation data need to be recalibrated for valuable application. For this purpose, this paper summarized the research status of the spaceborne microwave humidity sounder domestic and overseas at first. Then the existed recalibration method for these sounders are summarized in detail. In addition, the plan of the recalibration for Chinese spaceborne microwave humidity sounders are given, which will provide the key reference for the future re-calibration processing.

Key words: Spaceborne Microwave Atmospheric Humidity Sounder    Re-calibration    Consistency    Common technology
收稿日期: 2019-01-15 出版日期: 2020-03-23
ZTFLH:  TP722.6  
基金资助: 国家重点研发计划项目“国产多系列遥感卫星历史资料再定标技术”(2018YFB0504900)
通讯作者: 王振占     E-mail: lijiaoyang199204@126.com;wangzhenzhan@mirslab.cn
作者简介: 李娇阳(1992-),女,吉林农安人,博士研究生,主要从事微波辐射计定标及应用研究。E?mail:lijiaoyang199204@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李娇阳
王振占
谷松岩
张升伟

引用本文:

李娇阳,王振占,谷松岩,张升伟. 星载微波大气湿度探测仪再定标共性技术分析[J]. 遥感技术与应用, 2019, 34(6): 1212-1220.

Jiaoyang Li,Zhenzhan Wang,Songyan Gu,Shengwei Zhang. Common Re-calibration Technology for Spaceborne Microwave Atmospheric Humidity Sounder. Remote Sensing Technology and Application, 2019, 34(6): 1212-1220.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.6.1212        http://www.rsta.ac.cn/CN/Y2019/V34/I6/1212

探测仪频率/GHz带宽(边带数量)极化角

SSM/T

-2

美国

91.655±1.251.5(2)θ
150.0±1.251.5(2)θ
183.31±1.00.5(2)θ
183.31±3.01.0(2)θ
183.31±7.01.5(2)θ

AMSU

-B

美国

89.01.0(2)90-θ
150.01.0(2)90-θ
183.31±1.00.5(2)90-θ
183.31±3.01.0(2)90-θ
183.31±7.02.0(2)90-θ
HSB150.01.0(2)90-θ
美国183.31±1.00.5(2)90-θ
巴西183.31±3.01.0(2)90-θ
183.31±7.02.0(2)90-θ

MHS

美国

欧洲

89.02.4(1)90-θ
157.02.4(1)90-θ
183.311±1.00.5(2)θ
183.31±3.00.9(2)θ
190.3112.2(1)90-θ

ATMS

美国

88.22.0(1)90-θ
165.53.0(1)θ
183.31±1.00.5(2)θ
183.31±3.01.0(2)θ
183.31±7.02.0(2)θ

MWHS

中国

1501.0(2)90-θ
1501.0(2)θ
183.31±10.5(2)90-θ
183.31±31.0(2)90-θ
183.31±71.0(2)90-θ

MWHS

-II

中国

891.5(2)90-θ
1501.5(2)90-θ
183.31±10.5(2)θ
183.31±1.80.7(2)θ
183.31±31(2)θ
183.31±4.52(2)θ
183.31±72(2)θ
表1  国内外太阳同步轨道星载微波大气探测仪性能指标
1 Hartmann D L, Klein Tank A M G, et al. Observations: Atmosphere and Surface[C]∥Climate Change 2013: The Physical Science Basis. United Kingdom: Cambridge University Press, 2013.
2 GCOS. Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update[EB/OL]. , 2010.
3 Kobayashi S, Poli P, John V O. Characterisation of Special Sensor Microwave Water Vapor Profiler (SSM/T-2) Radiances Using Radiative Transfer Simulations from Global Atmospheric Reanalyses[J]. Advances in Space Research, 2017, 59(4):917-935.
4 Ulaby F, Long D. Microwave Radar and Radiometric Remote Sensing[M]. Ann Arbor: University of Michigan Press, 2014.
5 Andersson E, Hólm E., Bauer P, et al. Analysis and Forecast Impact of the Main Humidity Observing Systems[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(627): 1-10.
6 John V O, Holl G, Buehler S A, et al. Understanding Intersatellite Biases of Microwave Humidity Sounders Using Global Simultaneous Nadir Overpasses[J]. Journal of Geophysical Research Atmospheres, 2012, 117(D02305). doi:10.102912011JD016349.
doi: 10.102912011JD016349
7 Xavier P K, John V O, Buehler S A, et al. Variability of Indian Summer Monsoon in a New Upper Tropospheric Humidity Data Set[J]. Geophysical Research Letters, 2010, 37(5):137-147.
8 Eymard L, Karbou F, Janicot S, et al. On the Use of Advanced Microwave Sounding Unit-A and -B Measurements for Studying the Monsoon Variability over West Africa[J]. Journal of Geophysical Research, 2010, 115(D20):D20115. doi:10.1029/2009JD012935.
doi: 10.1029/2009JD012935
9 Buehler S A, Kuvatov M, John V O, et al. An Upper Tropospheric Humidity Data Set from Operational Satellite Microwave Data[J]. Journal of Geophysical Research, 2008, 113(D14):D14110. doi: 10.1029/2007JD009314.
doi: 10.1029/2007JD009314
10 Galin I, Brest DH, Martner GR. The DMSP SSM/T-2 Microwave Water-vapor Profile[C]∥ SPIE Proceedings. 1935:189-198. 1993.
11 Saunders R W, Hewison T J, Stringer S J, et al. The Radiometric Characterization of AMSU-B[J]. IEEE Transactions on Microwave Theory and Techniques, 1995, 43(4):760-771.
12 Bonsignori R. The Microwave Humidity Sounder (MHS): In-orbit Performance Assessment[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2007, 67440A:67440A-1-67440A-12.
13 Lambrigtsen B, Calheiros R V. The Humidity Sounder for Brazil - An International Partnership[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003, 41(2):352-361.
14 Kim E, Lyu C J, Leslie R V, et al. The Advanced Technology Microwave Sounder (ATMS): A New Operational Sensor Series[C]∥ IEEE Geoscience and Remote Sensing Symposium, 2012.
15 Zhang Shengwei, Li Jing, Jiang Jingshan, et al. Design and Development of Microwave Humidity Sounder for FY-3 Meteorological Satellite[J]. Journal of Remote Sensing, 2008,12(2):199-207.
15 张升伟, 李 靖, 姜景山,等. 风云三号卫星微波湿度计的系统设计与研制[J]. 遥感学报,2008,12(2):199-207.
16 Zhang Yu, Zhang Shengwei, Wang Zhenzhan, et al. Technology Development of Atmospheric Humidity Sounding of FY-3 Satellite[J]. Aerospace Shanghai, 2017, 34(4): 52-61.
16 张瑜, 张升伟, 王振占,等. FY-3卫星大气湿度微波探测技术发展[J]. 上海航天, 2017, 34(4): 52-61.
17 Falcone V J, Griffin M K, Isaacs R G, et al. SSM/T-2 Calibration and Validation Data Analyses[C]∥ IEEE Topical Symposium on Combined Optical, Microwave, Earth & Atmosphere Sensing. 1993.
18 Atkinson N C. Calibration, Monitoring and Validation of AMSU-B[J]. Advances in Space Research, 2001, 28(1):117-126.
19 Moradi I, Ferraro R R. Inter-calibration and Validation of Observations from SAPHIR and ATMS Instruments[C]∥ Agu Fall Meeting. AGU Fall Meeting Abstracts, 2015.
20 Brogniez Hélène, English S, Mahfouf Jean-François, et al. A Review of Sources of Systematic Errors and Uncertainties in Observations and Simulations at 183 GHz[J]. Atmospheric Measurement Techniques, European Geosciences Union, 2016, 9 (5):2207-2221. doi: 10.5194t-9-2207-2016.
doi: 10.5194t-9-2207-2016
21 Lu Q, Lawrence H, Bormann N, et al. An evaluation of FY-3C Satellite Data Quality at ECMWF and the Met Office[M]. European Centre for Medium-Range Weather Forecasts, 2015.
22 Saunders R W, Blackmore T A, Candy B, et al. Monitoring Satellite Radiance Biases Using NWP Models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3):1124-1138.
23 Ebrahimi H, Chen R, Wilheit T, et al. Inter-calibration of Microwave Radiometeres on Polar Orbiters in the GPM Constellation[C]∥ Geoscience & Remote Sensing Symposium. IEEE, 2016.
24 Pickle J D, Isaacs R G, Griffin M K, et al. Comparison of Colocated SSM/T-2 and MIR Measurements: Results from the Calibration study[C]∥ Proceedings of SPIE - The International Society for Optical Engineering, 1993.
25 English S J, Guillou C, Prigent C, et al. Aircraft Measurements of Water Vapour Continuum Absorption at Millimetre Wavelengths[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 120(517):603-625.
26 Mcgrath A, Hewison T J. Radiometric Characterisation of the UK Met. Office Microwave Airborne Radiometer Scanning System (MARSS)[C]∥ IEEE International Geoscience & Remote Sensing Symposium, 2011.
27 Blackwell W J, Bickmeier L J, Jairam L G, et al. On-orbit Radiometric Validation and Field-of-view Calibration of Spaceborne Microwave Sounding Instruments[C]∥ IEEE Microwave Radiometry & Remote Sensing of the Environment, Microrad, 2008.
28 Larar A M, Zhou D K, Liu X, et al. Advanced Sounder Validation Studies from Recent NAST-I Airborne Field Campaigns[C]∥ Society of Photo-optical Instrumentation Engineers. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2016.
29 Cao C, Weinreb M, Xu H. Predicting Simultaneous Nadir Overpasses among Polar-Orbiting Meteorological Satellites for the Intersatellite Calibration of Radiometers[J]. Journal of Atmospheric and Oceanic Technology,2004,21(4):537-542.
30 Cao C, Xu H, Sullivan J, et al. Intersatellite Radiance Biases for the High-resolution Infrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 from Simultaneous Nadir Observations[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(4):381-395.
31 Luo J, Jeyaratnam J, Shan N,et al. Inter-calibration of UTH-related Radiances from SSM/T-2 and AMSU-B[EB/OL]. NOAA CREST,2017. .
32 Gu Songyan, Wang Zhenzhan, Li Jing, et al. FY-3A/MWHS Data Calibration and Validation Analysis[J], Engineering Sciences, 2013, 15(7):92-100.
32 谷松岩, 王振占, 李靖,等. FY-3A/MWHS在轨辐射定标及结果分析[J]. 中国工程科学,2013, 15(7):92-100.
33 He Jieying, Zhang Shengwei. In-orbit Performance Analysis on Monitoring Typhoon with FY-3B/MWHS,2016,27(6):709-715.
33 何杰颖, 张升伟, 王澄海,等. FY-3B/MWHS性能参数在轨实时监测[J]. 应用气象学报,2016,27(6):709-715.
34 Hu Y, Jun Z, Fuzhong W, et al. Developing Vicarious Calibration for Microwave Sounding Instruments Using Lunar Radiation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018,56(11):6723-6733.
35 Han Y, Paul Van Delst, Liu Q H, et al. JCSDA Community Radiative Transfer Model(CRTM)-Version 1[R]. NOAA Technical Report NESDIS122. 2006.
36 Hocking J, Rayer P J, Rundle D, et al. RTTOV v11 Users Guide NWP-SAF Report, Met[R]. Office: Exeter, UK, 2014.
37 Buehler S, Eriksson P, Kuhn T, et al. ARTS, the Atmospheric Radiative Transfer Simulator [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 91(1):65-93.
38 Gordley L L, Marshall B T, Allen Chu D. Linepak: Algorithms for Modeling Spectral Transmittance and Radiance [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1994, 52(5):563-580.
39 Berk A, Bernstein L S, Robertson D C. MODTRAN: A Moderate Resolution Model for LOWTRAN 7[R]. Report GL-TR-89–0122; Geophysics Laboratory: Bedford, MD, USA, 1989.
40 Clough S, Shephard M, Mlawer E, et al. Atmospheric Radiative Transfer Modeling: A Summary of the AER Codes[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 91(2):233-244.
41 Liebe H, Hufford G, Cotton M. Propagation Modeling of Moist Air and Suspended Water/ice Particles at Frequencies Below 1 000 GHz[C]∥ Proceedings of the In AGARD, Atmospheric Propagation Effects through Natural and Man-Made Obscurants for Visible to MM-Wave Radiation 11 p (SEE N94-30495 08-32), F, 1993.
42 Rosenkranz P W. Water Vapor Microwave Continuum Absorption: A Comparison of Measurements and Models [J]. Radio Science, 1998, 33(4):919-928.
43 English S J, Hewison T J. Fast Generic Millimeter-wave Emissivity Model[C]∥Microwave Remote Sensing of the Atmosphere and Environment, International Society for Optics and Photonics, 1998, 3503: 288-300.
44 Karbou F, Gérard, Elisabeth, Rabier F. Global 4DVAR Assimilation and Forecast Experiments Using AMSU Observations over Land. Part I: Impacts of Various Land Surface Emissivity Parameterizations[J]. Weather and Forecasting, 2010, 25(1):5-19.
45 Prigent C, Aires F, Wang D, et al. Sea‐surface Emissivity Parametrization from Microwaves to Millimetre Waves[J]. Quarterly Journal of the Royal Meteorological Society, 2017, 143(702):596-605.
[1] 杨燕,李震,黄磊,田帮森. 高分辨率SAR影像提取冰川面积与冰面河[J]. 遥感技术与应用, 2019, 34(6): 1155-1161.
[2] 钟函笑,边金虎,李爱农. Landsat-8 OLI与Sentinel-2 MSI山区遥感影像辐射一致性研究[J]. 遥感技术与应用, 2018, 33(3): 428-438.
[3] 郭钇宏,王博,刘勇,杨亦宁 . 综合优度法和不一致性法的最优分割参数选择方法[J]. 遥感技术与应用, 2014, 29(3): 489-497.