Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (6): 1235-1244    DOI: 10.11873/j.issn.1004-0323.2019.6.1235
模型与反演     
融合遥感先验信息的叶面积指数反演
徐卫星1,2(),薛华柱1,靳华安2(),李爱农2
1.河南理工大学 测绘与国土信息工程学院,河南 焦作 454150
2.中国科学院水利部成都山地灾害与环境研究所,四川 成都 610041
Retrieval of Leaf Area Index by Fusing Prior Information from Remote Sensing Data
Weixing Xu1,2(),Huazhu Xue1,Huaan Jin2(),Ainong Li2
1.Henan Polytechnic University, School of Surveying and Land Information;Engineering, Jiaozuo 454150, China
2.Institute of Mountain Hazards and Environment, Chinese Academy of Science, Chengdu 610041, China
 全文: PDF(3708 KB)   HTML
摘要:

借助植被辐射传输模型,利用遥感观测数据估算LAI是一种较为可靠和稳健的反演方法。然而,地表的复杂性、遥感观测的有限性以及自相关性导致遥感数据包含的信息量不足,不能完全支持LAI等地表参数的估算,易造成“病态”反演。在遥感反演过程中引入先验知识能够有效地解决该问题。研究基于遥感数据提取LAI先验信息,并将其用于代价函数的构建,利用PROSAIL辐射传输模型和遗传算法,分别在500 m和250 m尺度反演LAI。将高空间分辨率LAI分别升尺度到500 m和250 m,验证对应尺度LAI结果,评价引入先验信息对于提高LAI反演精度的作用。研究表明,引入先验信息有助于提高不同分辨率下LAI反演精度,且先验信息的质量一定程度上也影响着LAI反演结果。与未加入先验信息的LAI反演结果相比,以MODIS LAI产品作为先验信息反演的500 m尺度LAI结果精度R2由0.55提高至0.65,RMSE由1.29下降至0.38。在250 m尺度,以500 m LAI反演结果作为先验信息反演的叶面积指数,其精度优于以MODIS LAI产品为先验知识的估算结果,验证精度R2增加了0.08,RMSE减少了0.18。研究使用的先验信息主要来自遥感数据本身,没有地面实测数据的参与,在此基础上发展的多分辨率LAI反演方法具有估算大区域尺度LAI的应用潜力。

关键词: 叶面积指数遥感反演先验信息MODIS    
Abstract:

The estimation of leaf area index using remote sensing observation data depend on canopy radiative transfer models is a reliable and robust method. However, the information deficiency contained in the remote sensing data derived from the limitations of the surface heterogeneity, remote sensing observation and self-correlation, which cannot fully support the retrieval of surface parameters (e.g. LAI) and easily bring about the retrieval become ill-posed. The problem can be solved or alleviated effectively by introducing prior knowledge. This paper come up with an approach to extract priori information of Leaf Area Index (LAI) from the remote sensing data, and the information is utilized to construct cost function, PROSAIL radiative transfer model and genetic algorithm are coupled to retrieve LAI at 500 m and 250 m scales. Then the 10 m spatial resolution LAI is upscaled to 500 m and 250 m respectively to verify the corresponding LAI result, and evaluate effects of introduction of prior information on improving LAI accuracy. The comparison of performance between LAI result using MODIS LAI as prior information at 500 m scale with one without prior information indicates thatR2 increased from 0.55 to 0.65 and RMSE decreased from 1.29 to 0.38. The LAI result using 500 m optimal LAI result as prior information at 250 m scale is better than the estimation result with MODIS LAI priori knowledge, verification result shows thatR2 increased by0.08, RMSE decreased by 0.18. It is shown that LAI retrieval accuracy can be enhanced by auxiliary of LAI prior information, besides prior information quality also affects the LAI result to some extent. Multi-resolution LAI retrieval method developed in this paper has potential to estimate spatial and temporal LAI on large scale.

Key words: Leaf area index    Remote sensing retrieval    Prior information    MODIS
收稿日期: 2018-09-15 出版日期: 2020-03-23
ZTFLH:  P237  
基金资助: 国家自然科学基金面上项目(41671376);国家自然科学基金重点项目(41631180);国家自然科学基金青年项目(41301385)
通讯作者: 靳华安     E-mail: satellite_rs@163.com;jinhuaan@imde.ac.cn
作者简介: 徐卫星(1991-),男,河南洛阳人,硕士研究生,主要从事定量遥感反演方面的研究。E?mail:satellite_rs@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐卫星
薛华柱
靳华安
李爱农

引用本文:

徐卫星,薛华柱,靳华安,李爱农. 融合遥感先验信息的叶面积指数反演[J]. 遥感技术与应用, 2019, 34(6): 1235-1244.

Weixing Xu,Huazhu Xue,Huaan Jin,Ainong Li. Retrieval of Leaf Area Index by Fusing Prior Information from Remote Sensing Data. Remote Sensing Technology and Application, 2019, 34(6): 1235-1244.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.6.1235        http://www.rsta.ac.cn/CN/Y2019/V34/I6/1235

图1  研究区
图2  融合遥感先验信息LAI反演流程
图3  500 m尺度LAI反演结果对比
图4  250 m尺度LAI反演结果对比
图5  LAI空间分布
1 Chen J M,Cihlar J.Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images [J].Remote Sensing of Environment,1996,55(2):153-162.
2 Combal B,Baret F,Weiss M,et al.Retrieval of Canopy Biophysical Variables from Bidirectional Reflectance : Using Prior Information to Solve the Ill-posed Inverse Problem[J].Remote Sensing of Environment,2003,84(1):1-15.
3 Yun Zengxin,Zheng Guang,Ma Lixia,et al.Evaluate Quantitatively Effects of Understory on Leaf Area Index (LAI) Estimation Combining Active and Passive Remote Sensing Data[J].Remote Sensing Technology and Application,2019,34(3):583-594.
3 云增鑫,郑光,马利霞,等.联合主被动遥感数据定量评价林下植被对叶面积指数估算的影响[J].遥感技术与应用,2019,34(3):583-594.
4 Wang Jing,Li Xin.Progresses on Data Fusion Technology of Crop Growth Model and Multi-source Observation Information[J].Remote Sensing Technology and Application,2015,30(2):209-219.
4 王静,李新.基于作物生长模型和多源数据的融合技术研究进展[J].遥感技术与应用,2015,30(2):209-219.
5 Xie Xinyao,Li Ainong,Jin Hua′an.The Simulation Models of the Forest Carbon Cycle on A Large Scale: A Review[J].Acta Ecologica Sinica,2018,38(1) :41-54.
5 谢馨瑶,李爱农,靳华安.大尺度森林碳循环过程模拟模型综述[J].生态学报,2018,38(1):41-54.
6 Haboudane D,Miller J R,Pattey E,et al.Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture[J].Remote Sensing of Environment,2004,90(3):337-352.
7 Verrelst J,Camps-Valls G,Muñoz-Marí J,et al.Optical Remote Sensing and the Retrieval of Terrestrial Vegetation Bio-geophysical Properties—A Review[J].Isprs Journal of Photogrammetry & Remote Sensing,2015,108:273-290.
8 Jin Huaan,Li Ainong,Bian Jinhu,et al.Leaf Area Index (LAI) Estimation from Remotely Sensed Observations in Different Topographic Gradients over Southwestern China[J].Remote Sensing Technology and Application,2016,31(1) :42-50.
8 靳华安,李爱农,边金虎,等.西南地区不同山地环境梯度叶面积指数遥感反演[J].遥感技术与应用,2016,31(1):42-50.
9 Jin Huaan,Liu Dianwei,Wang Zongming,et al.Remote Sensing Estimation Models of Wetland Vegetation LAI in Sanjiang Plain[J].Chinese Journal of Ecology,2008,27(5):803-808.
9 靳华安,刘殿伟,王宗明,等.三江平原湿地植被叶面积指数遥感估算模型[J].生态学杂志,2008,27(5):803-808.
10 Fang H,Liang S,Kuusk A.Retrieving Leaf Area Index Using A Genetic Algorithm with a Canopy Radiative Transfer Model[J].Remote Sensing of Environment,2003,85(3):257-270.
11 Ganguly S,Nemani R R,Zhang G,et al.Generating Global Leaf Area Index from Landsat: Algorithm Formulation and Demonstration[J].Remote Sensing of Environment,2012,122(1):185-202.
12 Meroni M,Colombo R,Panigada C.Inversion of A Radiative Transfer Model with Hyperspectral Observations for LAI Mapping in Poplar Plantations[J].Remote Sensing of Environment,2004,92(2):195-206.
13 Schlerf M,Atzberger C.Inversion of A Forest Reflectance Model to Estimate Structural Canopy Variables from Hyperspectral Remote Sensing Data[J].Remote Sensing of Environment,2006,99(3):281-294.
14 Yang Guijun,Zhao Chunjiang,Xing Zhurong,et al.LAI Inversion of Spring Wheat based on PROBA/CHRIS Hyperspectral Multi-angular Data and PROSAIL Model[J].Transactions of the CSAE,2011,27(10):88-94.
14 杨贵军,赵春江,邢著荣,等.基于PROBA/CHRIS遥感数据和PROSAIL模型的春小麦LAI反演[J].农业工程学报,2011,27(10):88-94.
15 Atzberger C.Object-based Retrieval of Biophysical Canopy Variables Using Artificial Neural Nets and Radiative Transfer Models [J].Remote Sensing of Environment,2004,93(1–2):53-67.
16 Liang S.Recent Developments in Estimating Land Surface Biogeophysical Variables from Optical Remote Sensing[J].Progress in Physical Geography,2007,31(5):501-516.
17 Li C,Song J,Wang J.Modifying Geometric-Optical Bidirectional Reflectance Model for Direct Inversion of Forest Canopy Leaf Area Index[J].Remote Sensing,2015,7(9):11083-11104.
18 Chen J M,Leblanc S G.A Four-scale Bidirectional Reflectance Model based on Canopy Architecture[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(5):1316-1337.
19 Verhoef W.Light Scattering by Leaf Layers with Application to Canopy Reflectance Modeling: the SAIL Model[J].Remote Sensing of Environment,1984,16(2):125-141.
20 Feret J B,François C,Asner G P,et al.PROSPECT-4 and 5: Advances in the Leaf Optical Properties Model Separating Photosynthetic Pigments[J].Remote Sensing of Environment,2011,112(6):3030-3043.
21 Jacquemoud S,Verhoef W,Baret F,et al.PROSPECT + SAIL Models: A Review of Use for Vegetation Characterization[J].Remote Sensing of Environment,2009,113(2009):S56-S66.
22 Baret F,Buis S.Estimating Canopy Characteristics from Remote Sensing Observations: Review of Methods and Associated Problems[M].Berlin:Springer Netherlands,2008:173-201.
23 Combal B,Baret F,WEISS M.Improving Canopy Variables Estimation from Remote Sensing Data by Exploiting Ancillary Information, Case Study on Sugar Beet Canopies[J].Agronomie,2002,22(3-4):205-215.
24 Liang Shunlin,Cheng Jie,Jia Kun,et al.Recent Progress in Land Surface Quantitative Remote Sensing[J].Journal of Remote Sensing,2016,20(5):875-898.
24 梁顺林,程洁,贾坤,等.陆表定量遥感反演方法的发展新动态[J].遥感学报,2016,20(5):875-898.
25 Rivar J P,Verrelst J,Leonenko G,et al.Multiple Cost Functions and Regularization Options for Improved Retrieval of Leaf Chlorophyll Content and LAI through Inversion of the PROSAIL Model[J].Remote Sensing,2013,5(7):3280-3304.
26 Li Xiaowen,Wang Jindi,Hu Baoxin,et al.On Utilization of Prior Knowledge in Inversion of Remote Sensing Models[J].Science in China(Series D)[J].Science in China,1998,41(6):580-585.
26 李小文,王锦地,胡宝新,等.先验知识在遥感反演中的作用[J].中国科学:地球科学,1998,28(1):67-72.
27 Yan Guangjian,Wu Jun,Wang Jindi,et al.Spectral Prior Knowledge and Its Use in the Remote Sensing based Inversion of Vegetation Structure[J].Journal of Remote Sensing,2002,6(1):1-6.
27 阎广建,吴均,王锦地,等.光谱先验知识在植被结构遥感反演中的应用[J].遥感学报,2002,6(1):1-6.
28 Li X,Gao F,Wang J,et al.A Priori Knowledge Accumulation and Its Application to Linear BRDF Model Inversion[J].Journal of Geophysical Research Atmospheres,2001,106(D11):11925-11935.
29 Campos-Taberner M,García-Haro F J,Camps-Valls G,et al.Multitemporal and Multiresolution Leaf Area Index Retrieval for Operational Local Rice Crop Monitoring[J].Remote Sensing of Environment,2016,187:102-118.
30 Campostaberner M,Garcíaharo F,Campsvalls G,et al.Exploitation of SAR and Optical Sentinel Data to Detect Rice Crop and Estimate Seasonal Dynamics of Leaf Area Index[J].Remote Sensing,2017,9(3):248.doi:10.3390/rs9030248.
doi: 10.3390/rs9030248
31 Laurent V C E,Schaepman M E,Verhoef W,et al.Bayesian Object-based Estimation of LAI and Chlorophyll from a Simulated Sentinel-2 Top-of-atmosphere Radiance Image[J].Remote Sensing of Environment,2014,140(1):318-329.
32 Campos taberner M,Álvaro M,Haro F J G,et al.Global Estimation of Biophysical Variables from Google Earth Engine Platform[J].Remote Sensing,2018,10(8):1167.doi:10.3390/ rs10081167.
doi: 10.3390/ rs10081167
33 Knyazikhin Y,Martonchik J V,Myneni R B,et al.Synergistic Algorithm for Estimating Vegetation Canopy Leaf Area Index and Fraction of Absorbed Photosynthetically Active Radiation from MODIS and MISR Data[J].Journal of Geophysical Research Atmospheres,1998,103(D24):32257-32275.
34 Myneni R B,Knyazikhin Y.Early Spatial and Temporal Validation of MODIS LAI Product in the Southern Africa Kalahari[J].Remote Sensing of Environment,2002,83(1):232-243.
35 Gu Chengyan,Du Huaqiang,Zhou Guomo,et al.Retrieval of Leaf Area Index of Moso Bamboo Forest with Landsat Thematic Mapper Image based on PROSAIL Canopy Radiative Transfer Model[J].Chinese Journal of Applied Ecology,2013,24(8):2248-2256.
35 谷成燕,杜华强,周国模,等.基于PROSAIL辐射传输模型的毛竹林叶面积指数遥感反演[J].应用生态学报,2013,24(8):2248-2256.
36 Verhoef W,Jia L,Xiao Q,et al.Unified Optical-thermal Four-stream Radiative Transfer Theory for Homogeneous Vegetation Canopies[J].IEEE Transactions on Geoscience & Remote Sensing,2007,45(6):1808-1822.
37 Wang Lijuan,Niu Zheng.Sensitivity Analysis of Vegetation Parameters based on PROSAIL Model[J].Remote Sensing Technology and Application,2014,29(2):219-223.
37 王李娟,牛铮.PROSAIL模型的参数敏感性研究[J].遥感技术与应用,2014,29(2):219-223.
38 Goldberg D E.Genetic Algorithm in Search Optimization and Machine Learning[J].Addison Wesley,1989,xiii(7:2104-2116.
39 Anderson-Cook C M.Practical Genetic Algorithms[J].Publications of the American Statistical Association,2004,100(471):1099-1099.
40 Song Xingyuan,Shu Quanying,Wang Haibo,et al.Comparison and Application of SCE-UA, Genetic Algorithm and Simplex Method[J].Engineering Journal of Wuhan University,2009,42(1):6-9.
40 宋星原,舒全英,王海波,等.SCE-UA、遗传算法和单纯形优化算法的应用[J].武汉大学学报(工学版),2009,42(1):6-9.
41 Tang Shihao,Zhu Qijiang,Yan Guangjian,et al.Effects of GA on the Inversion of Linear and Nonlinear Remote Sensing Models[J].Journal of Beijing Normal University (Natural Science Edition),2002,38(2):266-272.
41 唐世浩,朱启疆,阎广建,等.遗传算法及其在遥感线性、非线性模型反演中的应用效果分析[J].北京师范大学学报(自然科学版),2002,38(2):266-272.
42 Pan Hongbo,Zhang Guo,Tang Xinming,et al.The Geometrical Model of Sensor Corrected Products for ZY-3 Satellite[J].Acta Ceodaetica et Cartoqraphica Sinica,2013,42(4):516-522.
42 潘红播,张过,唐新明,等.资源三号测绘卫星传感器校正产品几何模型[J].测绘学报,2013,42(4):516-522.
43 Fan Jinlong,Zhang Yeping,Li Changbao,et al.Systematic Analysis of Geometric Performance of Fengyun-3C MERSI Satellite Data Using Image Chip Matching Method[J].Remote Sensing Technology and Application,2018,33(4):621-627.
43 范锦龙,张晔萍,李昌宝,等.风云卫星中分辨率遥感数据几何定位误差分析[J].遥感技术与应用,2018,33(4):621-627.
44 Jin H,Li A,Bian J,et al.Intercomparison and Validation of MODIS and GLASS Leaf Area Index (LAI) Products over Mountain Areas: A Case Study in Southwestern China[J].International Journal of Applied Earth Observations & Geoinformation,2017,55:52-67.
45 Zhou Minyue,Shen Runping,Chen Jun,et al.Filtering and Reconstruction of LAI Time Series Data by S-G Filter based on Pixel Quality Analysis and Outlier Detection[J].Remote Sensing Technology and Application,2019,34(2):323-330.
45 周旻悦,沈润平,陈俊,等.基于像元质量分析和异常值检测的LAI时序数据S-G滤波重建研究[J].遥感技术与应用,2019,34(2):323-330.
46 Yan G,Mu X,Ma Y,et al.A Strategy to Integrate A Priori Knowledge for An Improved Inversion of the LAI from BRDF Modelling[J].International Journal of Remote Sensing,2008,29(17-18):4927-4941.
47 Gao F,Li X,Strahler A,et al.Acquiring A Priori Knowledge from Ground and Spaceborne BRDF Measurements[C]∥IEEE International Geoscience and Remote Sensing Symposium,2000,2:718-720.
48 Mousivand A,Menenti M,Gorte B,et al.Multi-temporal, Multi-sensor Retrieval of Terrestrial Vegetation Properties from Spectral–directional Radiometric Data[J].Remote Sensing of Environment,2015,158(158):311-330.
49 Zou Lili,Cui Haishan,Li Ying,et al.Research of Fusion Algorithm based on SAR and SPOT[J].Remote Sensing Technology and Application,2010,25(6):836-841.
49 邹丽丽,崔海山,李颖,等.SAR与SPOT数据融合方法研究[J].遥感技术与应用,2010,25(6):836-841.
50 Knyazikhin Y.Inversion Methods for Physically-based Models[J].Remote Sensing Reviews,2000,18(2-4):381-439.
[1] 程雪,贺炳彦,黄耀欢,孙志刚,李鼎,朱婉雪. 基于无人机高光谱数据的玉米叶面积指数估算[J]. 遥感技术与应用, 2019, 34(4): 775-784.
[2] 冯艾琳,武晋雯,孟莹,姜鹏,董巍,张璇,方缘,刘斌. 基于MODIS GPP数据产品的辽宁省碳源/汇空间格局分布研究[J]. 遥感技术与应用, 2019, 34(4): 857-864.
[3] 冯婵莹, 汪子豪, 郑成洋. 基于分层线性回归的MODIS反照率产品降尺度方法研究[J]. 遥感技术与应用, 2019, 34(3): 602-611.
[4] 云增鑫, 郑光, 马利霞, 王晓菲, 卢晓曼, 路璐. 联合主被动遥感数据定量评价林下植被对叶面积指数估算的影响[J]. 遥感技术与应用, 2019, 34(3): 583-594.
[5] 丁海宁. 黄土高原土壤铁元素含量遥感反演方法 [J]. 遥感技术与应用, 2019, 34(2): 275-283.
[6] 王莹莹, 袁金国, 张莹, 吴朝阳. 中国温带地区植被物候期时空变化特征及对总初级生产力的影响[J]. 遥感技术与应用, 2019, 34(2): 377-388.
[7] 刘洁, 李静, 柳钦火, 何彬彬, 于文涛. 全球典型植被叶片光谱特征及其对LAI反演的影响分析[J]. 遥感技术与应用, 2019, 34(1): 155-165.
[8] 尹思阳, 吴文瑾, 李新武. 基于遥感和气象数据的东南亚森林动态变化分析[J]. 遥感技术与应用, 2019, 34(1): 166-175.
[9] 金点点, 宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[10] 冯姣姣, 王维真, 李净, 刘雯雯. 基于BP神经网络的华东地区太阳辐射模拟及时空变化分析[J]. 遥感技术与应用, 2018, 33(5): 881-889.
[11] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[12] 刘振波,邹娴,葛云健,陈健,曹雨濛. 基于高分一号WFV影像的随机森林算法反演水稻LAI[J]. 遥感技术与应用, 2018, 33(3): 458-464.
[13] 拉巴卓玛,次珍. 2002~2015年西藏雅鲁藏布江流域积雪变化及影响因子分析研究[J]. 遥感技术与应用, 2018, 33(3): 508-519.
[14] 谢京凯,王福民,王飞龙,张东尼. 面向水稻LAI监测的植被指数土壤调节参数修正[J]. 遥感技术与应用, 2018, 33(2): 342-350.
[15] 汤玉明,邓孺孺,刘永明,熊龙海. 大气气溶胶遥感反演研究综述[J]. 遥感技术与应用, 2018, 33(1): 25-34.