Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (6): 1343-1352    DOI: 10.11873/j.issn.1004-0323.2019.6.1343
遥感应用     
基于三维激光扫描与无人机倾斜摄影技术的古建筑重建
何原荣1,2(),陈平1(),苏铮1,王植1,李权海1
1.厦门理工学院 数字福建自然灾害监测大数据研究所,福建 厦门 361024
2.现代精密测量与激光无损检测福建省高校重点实验室(莆田学院),福建 莆田 351100
Ancient Buildings Reconstruction based on 3D Laser Scanningand UAV Tilt Photography
Yuanrong He1,2(),Ping Chen1(),Zheng Su1,Zhi Wang1,Quanhai Li1
1.Big Data Institute of Digital Natural Disaster Monitoring in Fujian, Xiamen University of Technology, Xiamen 361024, China
2.Fujian Province Key Laboratory of Modern Precision Measurement and Laser Nondestructive Testing, Putian 351100, China
 全文: PDF(4892 KB)   HTML
摘要:

针对古建筑三维重建中传统技术很难同时兼顾高精度三维信息快速获取和多角度真实地物纹理特征准确采集的难题,提出联合三维激光扫描与倾斜摄影测量技术的古建筑三维重建新方法。新方法充分结合了两种技术的优势,利用特征点匹配算法来实现多源数据精确融合,从而实现古建筑室内外完整三维模型的构建。以中国传统村落渐山村李氏家庙为例,通过该方法构建的三维模型与实际激光测距仪测量数据比较,其相对中误差为5 mm, 且建模效率相对于传统方法也有大幅提升;此外,将构建的模型以不同比例尺进行3D打印与室内外展示,进一步验证了建模数据的可用性;表明该方法将为古建筑文化遗产的修复与保护提供重要技术支持。

关键词: 三维激光扫描无人机倾斜摄影数据融合古建筑重建3D打印    
Abstract:

Modeling ancient architectures by traditional methods can hardly obtain high precision 3D spatial information and the texture information of the target object at the same time. This study proposes to combine the 3D laser scanning technology and tilt photography measurement technology to quickly restore the 3D information of ancient architectures. This method fuses multi-source data by feature matching and establishes the complete 3D model of the ancient architecture (inside and outside). The validation using the Li's family temple in a traditional Chinese village in Fujian province, China, shows that the relative mean error of the established 3D model is 5 mm. Furthermore, this method increases the modeling efficiency greatly. In addition, the constructed model is used for 3D printing and indoor and outdoor display in different scales, and the availability of model is further verified. This research will provide technical support for the restoration and protection of ancient architectures.

Key words: 3D laser scanning    UAV tilt photography technology    Data fusion    Ancient buildings reconstruction    3D printing    Belt and Road    Space earth science    Bibliometric evaluation    Research output    Research cooperations
收稿日期: 2019-08-10 出版日期: 2020-03-23
ZTFLH:  TP391.41  
基金资助: 国家自然科学基金面上项目(41574011);福建省高校重点实验室开放基金项目“现代精密测量与激光无损检测”(2018XKA007);厦门市科技计划项目(3502Z20183055)
通讯作者: 陈平     E-mail: 2012112001@xmut.edu.cn;chtchenping@163.com
作者简介: 何原荣(1977—),男,福建漳州人,教授,主要从事地图制图学与地理信息工程研究。E?mail: 2012112001@xmut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
何原荣
陈平
苏铮
王植
李权海

引用本文:

何原荣,陈平,苏铮,王植,李权海. 基于三维激光扫描与无人机倾斜摄影技术的古建筑重建[J]. 遥感技术与应用, 2019, 34(6): 1343-1352.

Yuanrong He,Ping Chen,Zheng Su,Zhi Wang,Quanhai Li. Ancient Buildings Reconstruction based on 3D Laser Scanningand UAV Tilt Photography. Remote Sensing Technology and Application, 2019, 34(6): 1343-1352.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.6.1343        http://www.rsta.ac.cn/CN/Y2019/V34/I6/1343

图1  扫描仪站点位置示意图
图2  航拍范围示意图
图3  改进特征点匹配算法流程图
图4  点云模型示意图
图5  多源数据融合前后对比
图6  建筑物特征点
测点坐标点云模型(S 1) 融合后模型(S 2) Δ=S 1-S 2ΔS测点坐标点云模型(S 1) 融合后模型(S 2) Δ=S 1-S 2ΔS
A1X2 692 832.072 692 832.08-0.010.014A7X2 692 855.602 692 855.61-0.010.017
Y575 152.83575 152.830Y575 152.09575 152.080.01
Z31.4931.50-0.01Z32.3232.310.01
A2X2 692 840.392 692 840.40-0.010.017A8X2 692 848.202 692 848.2000.014
Y575 164.08575 164.070.01Y575 142.10575 142.090.01
Z31.5331.54-0.01Z31.9831.970.01
A3X2 692 839.312 692 839.3100.010A9X2 692 861.802 692 861.790.010.030
Y575 159.88575 159.880Y575 148.16575 148.140.02
Z29.1829.19-0.01Z32.1832.160.02
A4X2 692 835.872 692 835.8700.014A10X2 692 853.942 692 853.9400.022
Y575 155.22575 155.23-0.01Y575 137.63575 137.620.01
Z29.1629.150.01Z32.0131.990.02
A5X2 692 844.502 692 844.51-0.010.017A11X2 692 851.002 692 851.01-0.010.017
Y575 161.66575 161.650.01Y575 155.47575 155.460.01
Z34.5834.570.01Z30.2230.210.01
A6X2 692 835.862 692 835.8600.014A12X2 692 836.472 692 836.4700.010
Y575 149.70575 149.71-0.01Y575 160.35575 160.36-0.01
Z34.5934.580.01Z27.2927.290
表1  多源数据融合精度结果(单位:m)
图7  建筑物立面与平面图
图8  古建筑三维模型
图9  古建筑3D打印模型
图10  测量示意图
对象实测长度(S 1)/m 模型长度(S 2)/m 误差ΔS=S 1-S 2/mm 对象实测长度(S 1)/m 模型长度(S 2)/m 误差ΔS=S 1-S 2/mm
侧面长25.49925.4954正门宽1.5181.5108
25.49425.499-51.5181.5135
25.50325.49761.5141.518-4
25.49725.49341.5151.519-4
25.49525.499-41.5131.516-3
25.50225.49931.5181.5135
ΔSMean4.33ΔSMean4.83
δ4.43δ5.08
正面宽12.61012.6064台阶高0.6390.6363
12.60712.60700.6340.6322
12.60612.59970.6310.637-6
12.61112.60830.6340.639-5
12.60812.609-10.6360.6333
12.60912.595140.6350.640-5
ΔSMean4.83ΔSMean4.00
δ6.72δ4.24
建筑高7.1717.172-1石板长9.2759.279-4
7.1757.16879.2879.2825
7.1737.16499.2899.2818
7.1707.173-39.2889.2835
7.1737.16769.2899.2845
7.1727.17029.2799.2727
ΔSMean4.67ΔSMean5.67
δ5.48δ5.83
窗户宽0.5560.5533侧门宽0.6660.6588
0.5570.559-20.6610.666-5
0.5530.554-10.6670.6616
0.5520.555-30.6650.667-2
0.5590.55270.6580.662-4
0.5530.556-30.6670.6652
ΔSMean3.17ΔSMean4.50
δ3.67δ4.98
表2  三维模型精度验证
1 Zhou Bo, He Taojian. Analysis of the Contemporary Value of Ancestral Hall Culture[J]. Forum of Arts, 2018, 108( 6): 80- 82.
1 周博,何涛见. 宗祠文化的当代价值分析[J]. 艺苑, 2018, 108( 6): 80- 82.
2 Zheng Yuanmao, He Yuanrong, Yu Jianwei. Construction Measurement and Analysis of Multi-functional Pneumatic based on the Laser Scanned Point Cloud Data[J]. Science of Surveying and Mapping, 2017, 42( 11): 171- 176.
2 郑渊茂,何原荣,余建伟. 激光点云的多功能风洞施工量测与分析[J]. 测绘科学, 2017, 42( 11): 171- 176.
3 Pesci A, Casula G, Boschi E. Laser Scanning the Garisenda and Asinelli Towers in Bologna (Italy): Detailed Deformation Patterns of Two Ancient Leaning Buildings[J]. Journal of Cultural Heritage, 2011, 12( 2): 117- 127.
4 Xu Fan, Zhang Xueheng, Shi Yuli. Research on Classification on Land Cover based on LiDAR Cloud and Aerial Images [J]. Remote Sensing Technology Application, 2019, 34( 2): 253- 262.
4 徐凡,张雪红,石玉立. 基于激光雷达和航拍影像的城市地物分类研究[J]. 遥感技术与应用, 2019, 34( 2): 253- 262.
5 Hua Lei, Huang Hongyu, Chen Chongcheng, et al. Three-dimensional Modeling of Hakka Earth Buildings based on the Laser Scanned Point Cloud Data[J]. Remote Sensing Technology and Application, 2015, 30( 1): 115- 122.
5 化蕾, 黄洪宇, 陈崇成, 等. 基于激光点云数据的客家土楼三维建模[J]. 遥感技术与应用, 2015, 30( 1): 115- 122.
6 Luo Yubo, Huang Hongyu, Tang Liyu, et al. Automatic Extraction of Forest Tree Height and DBH based on Ground Lidar Point Cloud Data and 3D Reconstruction [J]. Remote Sensing Technology and Application, 2019, 34( 2): 243- 252.
6 骆钰波, 黄洪宇, 唐丽玉, 等. 基于地面激光雷达点云数据的森林树高、胸径自动提取与三维重建[J]. 遥感技术与应用, 2019, 34 ( 2): 243- 252.
7 Li Bijun, Fang Zhixiang, Ren Juan. Extraction of Buildings Feature from Laser Scanning Data[J]. Geomatics and Information Science of Wuhan University, 2003, 28( 1): 65- 70.
7 李必军,方志祥,任娟. 从激光扫描数据中进行建筑物特征提取研究[J]. 武汉大学学报·信息科学版, 2003, 28( 1): 65- 70.
8 Liao Yujia, Hu Yong, Ye Tao. Construction of 3D Model based on Tilting Photography of Low Altitude UAV[J]. Beijing Surveying and Mapping, 2018, 32( 5): 504- 507.
8 廖玉佳,胡勇,叶涛. 基于低空无人机倾斜摄影的三维模型构建[J]. 北京测绘, 2018, 32( 5): 504- 507.
9 Chu Jie, Sheng Yinan. Application of UAV Tilt Photogrammetry in Urban 3D Modeling and 3D Data Updating[J]. Bulletin of Surveying and Mapping, 2017(S 1): 130- 135.
9 褚杰,盛一楠. 无人机倾斜摄影测量技术在城市三维建模及三维数据更新中的应用[J]. 测绘通报, 2017( 增刊1): 130- 135.
10 Lu Xingchang. 3D Scene Simulation based on Laser Scanning Data[J]. Journal of System Simulation, 2006, 18( S1): 176- 179.
10 路兴昌. 基于激光扫描数据的三维场景仿真[J]. 系统仿真学报, 2006, 18( 增刊1): 176- 179.
11 Wang Huixian. Analysis of Digital Technology in Ancient Building Protection[J]. Research on Heritage and Protection, 2019, 4( 4): 103- 105.
11 王慧贤. 古建筑保护中的数字化技术分析[J]. 遗产与保护研究, 2019, 4( 4): 103- 105.
12 Yan Yu, Li Zhe, Zhang Yukun, et al. A Probe into the Air-Ground Coordination Method for Historic Building Surveying and Mapping——Analysis and Summary of Beijing Shouhuang Palace Complex Surveying Project[J]. Traditional Chinese Architecture and Gardens, 2015( 4): 81- 86.
12 闫宇, 李哲, 张玉坤, 等. “空地协同”的古建筑测绘方法初探——北京寿皇殿建筑群实施案例分析和总结[J]. 古建园林技术, 2015( 4): 81- 86.
13 Wang Bingtao, Wang Ji. Production and Quality Analysis of 3D City Modeling Using Oblique Photogrametric Technology[J]. Urban Geotechnical Investigation & Surveying, 2015( 5): 80- 82, 85.
13 王丙涛,王继. 基于倾斜摄影技术的三维建模生产与质量分析[J]. 城市勘测, 2015( 5): 80- 82, 85.
14 He Yuanrong, Zheng Yuanmao, Cui Shenghui, et al. 3D Information Acquisition and Analysis of Building Damage based on Laser Point Cloud——A Case Study from Meranti Typhoon[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37( 2): 327- 334.
14 何原荣, 郑渊茂, 崔胜辉, 等. 基于激光点云的建筑灾损三维信息获取与分析——以“莫兰蒂”超强台风为例[J]. 防灾减灾工程学报, 2017, 37( 2): 327- 334.
15 Wang Tao, Liu Dejiang, Yang Liyong, et al. Reconstruction of 3D Model of Building Real Scene based on Sketch Up[J]. Software, 2019, 40( 4): 82- 84.
15 王涛, 柳德江, 阳利永, 等. 基于Sketch Up的建筑物实景三维模型重建[J]. 软件, 2019, 40( 4): 82- 84.
16 Gao Jun, Zhang Deyang, Zhang Zhenzhen. Three-Dimensional Modeling of Point Cloud Data of Buildings based on Real Works and Sketch Up[J]. Henan Science and Technology, 2017, 9( 17): 21- 23.
16 高俊,张德杨,张真真. 基于Real Works和Sketch Up的建筑物点云数据三维建模[J]. 河南科技, 2017, 9( 17): 21- 23.
[1] 王树果,刘伟,梁亮. 基于Triple-Collocation方法的微波遥感土壤水分产品不确定性分析及数据融合[J]. 遥感技术与应用, 2019, 34(6): 1227-1234.
[2] 张晓芸,魏鸣,潘佳文. FY-4闪电资料在厦门强降水监测预警中的应用[J]. 遥感技术与应用, 2019, 34(5): 1082-1090.
[3] 高书鹏, 史正涛, 刘晓龙, 柏延臣. 基于高时空分辨率可见光遥感数据的热带山地橡胶林识别[J]. 遥感技术与应用, 2018, 33(6): 1122-1131.
[4] 张晓峰, 吕晓琪, 张信雪, 张继凯, 王月明, 谷宇, 樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[5] 何原荣,郑渊茂,潘火平,陈鉴知. 基于点云数据的复杂建筑体真三维建模与应用[J]. 遥感技术与应用, 2016, 31(6): 1091-1099.
[6] 王守志,邢立新,仲波,杨爱霞,张福坤,梁敏. 基于Landsat-8 OLI和GF-1 PMS数据融合的铁染蚀变信息提取[J]. 遥感技术与应用, 2016, 31(5): 950-957.
[7] 蔡二丽,窦宝成,彭实,刘强,闻建光. 基于图像融合的反照率产品降尺度方法研究[J]. 遥感技术与应用, 2016, 31(4): 724-730.
[8] 康峻,王力,牛铮,高帅,邬明权 . 基于局部空间自相关分析的时空数据融合[J]. 遥感技术与应用, 2015, 30(6): 1176-1181.
[9] 郭文静,李爱农,赵志强,王继燕. 基于AVHRR和TM数据的时间序列较高分辨率NDVI数据集重构方法[J]. 遥感技术与应用, 2015, 30(2): 267-276.
[10] 王静,李新. 基于作物生长模型和多源数据的融合技术研究进展[J]. 遥感技术与应用, 2015, 30(2): 209-219.
[11] 王桂忠,苗洪利,王鑫,王永强,张杰. 基于共线和交叉点融合数据的高度计海况偏差参数模型的研究[J]. 遥感技术与应用, 2014, 29(1): 176-180.
[12] 王方建,习晓环,万怡平,钟开田,王成 . 大型建筑物数字化及三维建模关键技术分析[J]. 遥感技术与应用, 2014, 29(1): 144-150.
[13] 黄永喜,李晓松,吴炳方,董泰锋. 基于改进的ESTARFM数据融合方法研究[J]. 遥感技术与应用, 2013, 28(5): 753-760.
[14] 曹广真,张鹏,陈林,郑照军,胡秀清. 地面能见度观测在卫星遥感IDDI指数中的融合应用[J]. 遥感技术与应用, 2013, 28(4): 588-593.
[15] 蔡德文,牛铮,王力. 遥感数据时空融合技术在农作物监测中的适应性研究[J]. 遥感技术与应用, 2012, 27(6): 927-932.