Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (4): 864-872    DOI: 10.11873/j.issn.1004-0323.2020.4.0864
甘肃遥感学会专栏     
利用Sentinel-1A合成孔径雷达干涉时间序列监测陇东地区地面沉降变形
魏聪敏1(),葛伟鹏1,2(),邵延秀1,2,吴东霖1
1.中国地震局兰州地震研究所西部强震室,甘肃 兰州 730000
2.兰州地球物理国家野外科学观测研究站,甘肃 兰州 730000
Surface Deformation Field of Eastern Gansu Province by PS-InSAR Technique with Sentinel-1A
Congmin Wei1(),Weipeng Ge1,2(),Yanxiu Shao1,2,Donglin Wu1
1.Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, China
2.Lanzhou National Geophysical Observation and Research Station, Lanzhou 730000, China
 全文: PDF(8405 KB)   HTML
摘要:

基于覆盖陇东地区同一轨道的97景Sentinel-1A卫星影像,在ISCE和StaMPS数据处理平台上利用PS-InSAR技术进行叠加数据处理,获得研究区自2014年10月至2019年5月的年平均地表LOS向形变场,并对形变场结果进行二维网格滤波处理,获取沉降中心的变化特征。研究结果表明:陇东地区主要存在两类形变,一类是由构造活动引起的地表形变,主要分布在海原断裂与六盘山东麓断裂转换区附近,跨海原断裂年平均形变约为1 mm/a,而六盘山东麓断裂附近断层无明显变形,鄂尔多斯块体内部变形微弱;另一类则是由人类工业活动,如煤矿开采、地下水开采活动等导致的地表沉降,主要影响区域为华亭矿区和宁正矿区,均呈现漏斗状沉降形态,年均最大沉降分别约为8 mm/a和30 mm/a。

关键词: 哨兵卫星Sentinel-1A永久散射体雷达差分干涉技术地表形变监测陇东地区矿区沉降速率    
Abstract:

Through taking 97 Sentinel-1A SAR images from October 2014 to May 2019 covered most parts of Eastern Gansu province as experimental data, we monitored the surface deformation applying PS-InSAR technique for superimposed data processing based on ISCE and StaMPS to obtain the annual mean LOS rate of surface deformation field. Moreover, we filtered the LOS velocity field using two-dimensional mesh filtering to obtain the variation characteristics of the subsidence center. Our results reveal that there have two patterns of surface deformation. (1) Ground deformation caused by tectonic activity mainly locates around Haiyuan fault, whose mean annual LOS rate of deformation is ~1mm/a. However, there is no obvious deformation near the Liupanshan fault. Meanwhile, the internal deformation of the Ordos Block is subtle. (2) Another surficial deformation caused by mining activity occurs in the regions of Huating Mining Area and Ningzheng Mining Area, in which a ground subsidence funnel has been found. According to the time series deformation characteristic analysis of the settlement center, we know the mean annual LOS rate of deformation in the Huating Mining Area and Ningzheng Mining Area are ~8 mm/a and ~30 mm/a, respectively.

Key words: Sentinel-1A    PS-InSAR    Surface deformation monitoring    Eastern Gansu province    Subsidence rate of mining areas
收稿日期: 2019-09-16 出版日期: 2020-09-15
ZTFLH:  TP237  
基金资助: 中国地震科技星火计划(XH18048);甘肃省自然科学基金(17JR5RA340);国家重点研发计划(2017YFC1500102);中国地震局地震预测研究所基本科研业务费专项(2014IESLZ05);国家自然科学基金项目(41304035)
通讯作者: 葛伟鹏     E-mail: 15554186885@163.com;geweipeng@gmail.com
作者简介: 魏聪敏(1994—),女,山东济南人,硕士研究生,主要从事地壳形变研究。E?mail: 15554186885@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
魏聪敏
葛伟鹏
邵延秀
吴东霖

引用本文:

魏聪敏,葛伟鹏,邵延秀,吴东霖. 利用Sentinel-1A合成孔径雷达干涉时间序列监测陇东地区地面沉降变形[J]. 遥感技术与应用, 2020, 35(4): 864-872.

Congmin Wei,Weipeng Ge,Yanxiu Shao,Donglin Wu. Surface Deformation Field of Eastern Gansu Province by PS-InSAR Technique with Sentinel-1A. Remote Sensing Technology and Application, 2020, 35(4): 864-872.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.4.0864        http://www.rsta.ac.cn/CN/Y2020/V35/I4/864

图1  陇东研究区域地形地貌概况图(黑框为影像覆盖区,框内数字为条带号;黑色粗实线为省界;底图为地形图)
图2  时空基线分布图
图3  PS点分布图
图4  陇东地区地表年平均形变速率场
图5  连续GPS站点附近PS点累计形变时序图

GPS

站点名称

经度/°纬度/°GPS观测值(up)/(mm/a)InSAR观测值(Los)/(mm/a)
GSJN105.7635.530.960.77
LP02105.6135.971.381.28
LP04105.9635.951.401.68
LP06106.2435.921.521.30
表1  陇东地区连续GPS站点观测值与其对应的InSAR观测值
图6  研究区典型特征点累计形变时序图
图7  陇东地区典型形变区域沉降等值线展布图与沉降剖面图
1 Tian Qinjian, Ding Guoyu, Shen Xuhui. Seismic Tectonic Model of the Northeastern Corner of the Tibet Plateau[J]. Eerthquake, 2002(1): 9-16.
1 田勤俭, 丁国瑜, 申旭辉. 青藏高原东北隅强震构造模型[J]. 地震, 2002(1): 9-16.
2 Chen Bingqian. A Study on InSAR for Subsidence Monitoring in Mining Area[D]. Xuzhou: China Mining University, 2015.
2 陈炳乾. 面向矿区沉降监测的InSAR技术及应用研究[D]. 徐州:中国矿业大学,2015.
3 Ferretti A, Prati C, Rocca F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2202-2212.
4 Berardino P, Fornaro G, Lanari R, et al. A New Algorithm for Surface Deformation Monitoring based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
5 Shan Xinjian, Zhang Guohong, Wang Chisheng, et al. Joint Inversion for the Spatial Fault Slip Distribution of the 2015 Nepal Mw7.9 Earthquake based on InSAR and GPS Observations[J]. Chinese Journal of Geophysics, 2015, 58(11): 4266-4276.
5 单新建, 张国宏, 汪驰升,等. 基于InSAR和GPS观测数据的尼泊尔地震发震断层特征参数联合反演研究[J]. 地球物理学报, 2015, 58(11): 4266-4276.
6 Yang Chengsheng, Zhang Qin, Zhao Chaoying, et al. Small Baseline Bubset InSAR Technology Used in Datong Basin Ground Subsidence, Fissure and Fault Zone Monitoring[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 945-950.
6 杨成生, 张勤, 赵超英, 等. 短基线集InSAR技术用于大同盆地地面沉降、地裂缝及断裂活动监测[J]. 武汉大学学报(信息科学版), 2014, 39(8): 945-950.
7 Yu Yongping, Lin Hong, Wang Huiqiang. Temporal Sequence InSAR Technique was Used to Monitor Land Subsidence in Guanghua Basin[J]. Bulletin of Surveying and Mapping, 2015(S1): 157-159.
7 喻永平, 林鸿, 王会强. 利用时序InSAR技术监测广花盆地地面沉降[J]. 测绘通报,2015(): 157-159.
8 Liu C, Zhao C, Zhang Q, et al. Large Coverage Surface Deformation Monitoring with Multiple Insar Techniques and Multiple Sensor SAR Datasets: A Case Study in Linfen-Yuncheng Basin, China[C]// Geoscience & Remote Sensing Symposium. IEEE, 2016: 2889-2892.
9 Ji Lingyun, Wang Qingliang, Cui Duxin, et al. Time Series of Deformation in Tengchong Volcanic Area Extracted by SBAS-DInSAR[J]. Journal of Geodesy and Geodynamics, 2011, 31(4): 149-153.
9 季灵运, 王庆良, 崔笃信, 等. 利用SBAS-DInSAR技术提取腾冲火山区形变时间序列[J]. 大地测量与地球动力学, 2011, 31(4): 149-153.
10 Lu Yanyan, Ke Changqing, Chen Deliang, et al. Application of PS-InSAR in Surface Subsidence Monitoring in Mining Area of Peixian[J]. Geospatial Information, 2016, 14(5): 96-99.
10 陆燕燕, 柯长青, 陈德良, 等. PS-InSAR在沛县矿区地表沉降监测中的应用[J]. 地理空间信息, 2016, 14(5): 96-99.
11 Xu Wenbin, Li Zhiwei, Ding Xiaoli, et al. Application of Small Baseline Subsets D-InSAR Technology to Estimate the Time Series Land Deformation and Aquifer Storage Coefficients of Los Angeles Area[J]. Chinese Journal of Geophysics, 2012, 55(2): 452-461.
11 许文斌,李志伟,丁晓利, 等. 利用InSAR短基线技术估计洛杉矶地区的地表时序形变和含水层参数[J]. 地球物理学报, 2012, 55(2): 452-461.
12 Zhang Yonghong, Wu Hongan, Kang Yonghui, et al. Ground Subsidence over Beijing-Tianjin-Hebei Region during Three Periods of 1992 to 2014 Monitored by Interferometric SAR[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(9): 1050-1058.
12 张永红, 吴宏安, 康永辉. 京津冀地区1992~2014年三阶段地面沉降InSAR监测[J]. 测绘学报, 2016,45(9): 1050-1058.
13 Li Haijun, Zhang Yaowen, Gu hongbiao, et al. Land Subsidence Detection based on PS-InSAR Technology in Northern Area of Langfang City[J]. Journal of Geodesy and Geodynamics, 2018, 38(11): 26-31.
13 李海君,张耀文,谷洪彪,等. 基于PS-InSAR技术的廊坊北部地区地面沉降监测研究[J]. 大地测量与地球动力学, 2018, 38(11): 26-31.
14 Zhang Jianming, Gan Shu, Yuan Xiping, et al. The Extraction and Analysis of Kunming Ground Deformation Characteristics based on PS-InSAR[J]. Science of Surveying and Mapping, 2019, 44(1): 57-63,93.
14 张荐铭,甘淑,袁希平,等. PS-InSAR技术的昆明地表沉降特征提取与分析[J]. 测绘科学,2019,44(1): 57-63,93.
15 Jiang Decai, Zhang Yonghong, Zhang Jixian, et al. Uneven Land Subsidence Along Tianjin Subway Lines Monitored by InSAR Technology[J]. Remote Sensing Information,2017,32(6):31-36.
15 姜德才, 张永红, 张继贤, 等. 天津市地铁线不均匀地表沉降InSAR监测[J]. 遥感信息,2017,32(6): 31-36.
16 Zhu Xiuxing, Chen Mi, Gong Huili, et al. The Subsidence Monitoring along Beijing Subway Network based on MT-InSAR[J]. Journal of Geo-Information Science, 2018, 20(12): 126-135.
16 祝秀星, 陈蜜, 宫辉力, 等. 采用时序InSAR技术监测北京地铁网络沿线地面沉降[J]. 地球信息科学学报, 2018, 20(12): 126-135.
17 Tao Qiuxiang. Study of Key Techniques of PS InSAR and Its Applications to Monitor Mining Land Subsidence[D]. Shandong:Shandong University of Science and Technology,2010.
17 陶秋香. PS InSAR关键技术及其在矿区地面沉降监测中的应用研究[D]. 山东:山东科技大学,2010.
18 Ma Yonghui. Study on the Environmental Impact of Coal Resources Development in Longdong Area of Gansu Province[J]. West-China Exploration Engineering, 2010, 22(4): 95-97.
18 马永辉. 甘肃陇东地区煤炭资源开发对环境影响研究[J]. 西部探矿工程, 2010, 22(4): 95-97.
19 Guo Heng, Liu Zhiyang, Wang Zehui. Study on Surface Subsidence Monitoring in Pingliang Area based on DInSAR Technique[J]. Electronic Technology & Software Engineering, 2018, 141(19): 120-122.
19 郭恒, 刘志扬, 王泽辉. 基于DInSAR技术的平凉地区地表沉降监测研究[J]. 电子技术与软件工程,2018,141(19): 120-122.
20 Deng Qidong, Zhang Weiqi, Zhang Peizhen, et al. Haiyuan Strike-slip Fault Zone and Its Tail Compression Structure[J]. Seismology and Geology, 1989, 11(1): 1-14.
20 邓起东, 张维岐, 张培震, 等. 海原走滑断裂带及其尾端挤压构造[J]. 地震地质, 1989, 11(1): 1-14.
21 Zheng W J, Zhang P Z, He W G, et al. Transformation of Displacement between Strike-slip and Crustal Shortening in the Northern Margin of the Tibetan Plateau: Evidence from Decadal GPS Measurements and Late Quaternary Slip Rates on Faults[J]. Tectonophysics, 2013, 584: 267-280.
22 Cui Duxin, Hao Ming, Li Yuhang, et al. Present-day Crustal Movement and Strain of the Surrounding Area of Ordos Block Derived from Repeated GPS Observations[J]. Chinese Journal of Geophysics, 2016, 59(10): 3646-3661.
22 崔笃信, 郝明, 李煜航, 等.鄂尔多斯块体周缘地区现今地壳水平运动与应变. 地球物理学报,2016,59(10): 3646-3661.
23 Qu W, Lu Z, Zhang M, et al. Crustal Strain Fields in the Surrounding Areas of the Ordos Block,Central China,Estimated by the Least-squares Collocation Technique[J].Journal of Geo-dynamics,2017,106:1-11.doi:10.1016/j.jog.2017.01.005.
doi: 10.1016/j.jog.2017.01.005
24 Zhang Peizhen, Min Wei, Deng Dongqi, et al. Paleoearthquakes and Recurrence of Strong Earthquakes of the Haiyuan Active Fault Zone[J]. Science in China (Series D), 2003, 33(8): 705-713.
24 张培震, 闵伟, 邓起东, 等. 海原活动断裂带的古地震与强震复发规律[J]. 中国科学:地球科学,2003,33(8): 705-713.
25 The Earthquake Disaster Prevention Department of the State Seismological Bureau. Catalogue of Chinese Historical Strong Earthquakes: 23rd Century BC-1911 AD[M]. Beijing:Seismological Press, 1995.国家地震局震害防御司. 中国历史强震目录:公元前23世纪―公元1911年[M]. 北京:地震出版社,1995.
26 Wang Jiaqing, Shan Xinjian, Zhang Guohong, et al. Fault Slip Distribution Inversion and Co-seismic Deformation of the 2017 Jiuzhaigou MS7.0 Earthquake based on InSAR[J]. North China Earthquake Sciences, 2018(2): 1-7.王家庆, 单新建, 张国宏,等. 2017年九寨沟MS7.0地震InSAR同震形变场与断层滑动分布反演[J]. 华北地震科学,2018(2): 1-7.
27 Li Dan, Yang Bin, Chen Cai. Obtaining Coseismic Deformation Field of Jiuzhaigou Earthquake with Sentinel-1A[J]. Remote Sensing Technology and Application, 2018, 33(6) : 1141-1148.
27 李丹, 杨斌, 陈财. 基于 Sentinel-1A数据反演九寨沟地震地表形变场[J]. 遥感技术与应用,2018,33(6): 1141-1148.
28 Rosen P A, Gurrola E, Sacco G F, et al. The InSAR Scientific Computing Environment[C]// EUSAR 2012; 9th European Conference on Synthetic Aperture Radar. VDE, 2012: 730-733.
29 Hooper A, Bekaert D, Spaans K, et al. Recent Advances in SAR Interferometry Time Series Analysis for Measuring Crustal Deformation[J].Tectonophysics,2012,514(1): 1-13.
30 Su X, Yao L, Wu W, et al. Crustal Deformation on the Northeastern Margin of the Tibetan Plateau from Continuous GPS Observations[J].Remote Sensing,2019,11(1):1-21.
31 Zheng Wenjun, Zhang Peizhen, Yuan Daoyang, et al. Deformation on the Northern of the Tibetan Plateau from GPS Measurement and Geologic Rates of Late Quaternary Along the Major Fault[J]. Chinese Journal of Geophysics, 2009, 52(10): 2491-2508.
31 郑文俊, 张培震, 袁道阳, 等. GPS观测及断裂晚第四纪滑动速率所反映的青藏高原北部变形[J]. 地球物理学报, 2009, 52(10): 2491-2508.
32 Hao Ming, Li Yuhang, Qin Shanlan. Spatial and Temporal Distribution of Slip Rate Deficit Across Haiyuan-liupanshan Fault Zone Constrained by GPS Data[J]. Seismology and Geology, 2017(3): 471-480.
32 郝明, 李煜航, 秦姗兰. 基于GPS数据的海原-六盘山断裂带滑动速率亏损时空分布[J]. 地震地质, 2017(3): 471-480.
[1] 陶利,张红,王超,汤益先. 新型多基线DInSAR地表形变监测技术研究动态[J]. 遥感技术与应用, 2012, 27(6): 805-811.