遥感技术与应用 2020, Vol. 35 Issue (6): 1377-1385 DOI: 10.11873/j.issn.1004-0323.2020.6.1377 |
数据与图像处理 |
|
|
|
|
使用贝叶斯优化对遥感影像目标进行精确定位 |
柴栋1( ),许夙晖1,2( ),罗畅3,鲁彦辰4 |
1.空军研究院,北京 100085 2.中国人民解放军78102部队,四川 成都 610031 3.中国人民解放军78092部队,四川 成都 610031 4.中国人民解放军96946部队,北京 102202 |
|
Object Accurate Localization of Remote Sensing Image based on Bayesian Optimization |
Dong Chai1( ),Suhui Xu1,2( ),Chang Luo3,Yanchen Lu4 |
1.Beijing Aviation Engineering Technology Research Center,Beijing 100076,China 2.The Chinese People's Liberation Army(78102),Chengdu,Sichuan 610031,China 3.The Chinese People's Liberation Army(78092),Chengdu,Sichuan 610031,China 4.The Chinese People's Liberation Army(96946),Beijing 102202,China |
引用本文:
柴栋,许夙晖,罗畅,鲁彦辰. 使用贝叶斯优化对遥感影像目标进行精确定位[J]. 遥感技术与应用, 2020, 35(6): 1377-1385.
Dong Chai,Suhui Xu,Chang Luo,Yanchen Lu. Object Accurate Localization of Remote Sensing Image based on Bayesian Optimization. Remote Sensing Technology and Application, 2020, 35(6): 1377-1385.
链接本文:
http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.6.1377
或
http://www.rsta.ac.cn/CN/Y2020/V35/I6/1377
|
1 |
Wang Yingjie, Zhang Qiao, Zhang Yanmei, et al. Oil Tank Detection from Remote Sensing Images based on Deep Convolutional Neural Network[J]. Remote Sensing Technology and Application, 2019, 34(4): 727-735.
|
1 |
王颖洁, 张荞, 张艳梅, 等. 基于深度卷积神经网络的油罐目标检测研究[J]. 遥感技术与应用, 2019, 34(4): 727-735.
|
2 |
Cheng G, Han J. A Survey on Object Detection in Optical Remote Sensing Images[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2016, 117:11-28. doi: 10. 1109/TGRS. 2014. 2374218.
doi: 10. 1109/TGRS. 2014. 2374218
|
3 |
Yang Bisheng,Zong Zeliang,Chen Chi,et al. Real Time Approach for Underground Objects Detection from Vehicle-borne Ground Penetrating Radar[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7):874-883.
|
3 |
杨必胜, 宗泽亮, 陈驰, 等. 车载探地雷达地下目标实时探测法[J]. 测绘学报, 2020, 49(7):874-882.
|
4 |
Yang Rui, Qi Yuan, Su Yang. U-Net Neural Networks and Its Application in High Resolution Satellite Image Classification. Remote Sensing Technology and Application[J], 2020, 35(4): 767-774.
|
4 |
杨瑞, 祁元, 苏阳. 深度学习U-Net方法及其在高分辨卫星影像分类中的应用. 遥感技术与应用[J], 2020, 35(4): 767-774.
|
5 |
Zheng Xin, Pan Bin, Zhang Jian. Power Tower Detection in Remote Sensing Imagery based on Deformable Network and Transfer Learning[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8):1042-1050.
|
5 |
郑鑫, 潘斌, 张健. 可变形网络与迁移学习相结合的电力塔遥感影像目标检测法[J]. 测绘学报, 2020, 49(8):1042-1050.
|
6 |
Han J, Zhang D, Cheng G, et al. Object Detection in Optical Remote Sensing Images based on Weakly Supervised Learning and High-level Feature Learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3325-3337. doi: 10. 1109/TGRS. 2014. 2374218.
doi: 10. 1109/TGRS. 2014. 2374218
|
7 |
Zhang F, Du B, Zhang L, et al. Weakly Supervised Learning based on Coupled Convolutional Neural Networks for Aircraft Detection[J]. IEEE Transactions on Geoscience and Remote Sensin, 2016, 54(9): 5553. doi: 10. 1109/TGRS. 2016. 2569141.
doi: 10. 1109/TGRS. 2016. 2569141
|
8 |
Long Y, Gong Y, Xiao Z, et al. Accurate Object Localization in Remote Sensing Images based on Convolutional Neural Networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2486-2498. doi: 10. 1109/TGRS. 2016. 2645610.
doi: 10. 1109/TGRS. 2016. 2645610
|
9 |
Tang J, Deng C, Huang G B, et al. Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(3):1174-1185. doi: 10. 1109/TGRS. 2014. 2335751.
doi: 10. 1109/TGRS. 2014. 2335751
|
10 |
Yang Y, Zhuang Y, Bi F, et al. M-FCN: Effective Fully Convolutional Network-based Airplane Detection Framework[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1293-1297. doi: 10. 1109/LGRS. 2017. 2708722.
doi: 10. 1109/LGRS. 2017. 2708722
|
11 |
Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection[C]∥ Computer Vision and Pattern Recognition, 2005. CVPR2005.
|
11 |
IEEE Computer Society Conference on. IEEE, 2005, 1: 886-893.
|
12 |
Hosang J, Benenson R, Dollár P, et al. What Makes for Effective Detection Proposals?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(4): 814-830. doi: 10. 1109/TPAMI. 2015. 2465908.
doi: 10. 1109/TPAMI. 2015. 2465908
|
13 |
Uijlings J R R , Sande K E A V D , Gevers T , et al. Selective Search for Object Recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171. doi:10. 1007/s11263-013-0620-5.
doi: 10. 1007/s11263-013-0620-5
|
14 |
Cheng M M, Zhang Z, Lin W Y, et al. BING: Binarized Normed Gradients for Objectness Estimation at 300fps[C]∥ IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2014:3286-3293. doi: 10. 1109/CVPR. 2014. 414.
doi: 10. 1109/CVPR. 2014. 414
|
15 |
Erhan D, Szegedy C, Toshev A, et al. Scalable Object Detection Using Deep Neural Networks[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014: 2147-2154. doi: 10. 1109/CVPR. 2014. 276.
doi: 10. 1109/CVPR. 2014. 276
|
16 |
Zitnick C L, Dollár P. Edge Boxes: Locating Object Proposals from edges[C]∥ European Conference on Computer Vision. Springer, Cham, 2014: 391-405. doi: 10. 1007/978-3-319-10602-1_26.
doi: 10. 1007/978-3-319-10602-1_26
|
17 |
Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition[J]. Computerence, 2015. doi:arxiv.org/abs/1409.1556.
doi: arxiv.org/abs/1409.1556
|
18 |
Lizotte D J. Practical Bayesian Optimization[M]. Canadian: University of Alberta, 2008.
|
19 |
Lu Pengjie, Xu Dalu, Ren Fu, et al. Auto‐detection and Hiding of Sensitive Targets in Emergency Mapping based on Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8):1263-1272.
|
19 |
鲁鹏杰, 许大璐, 任福, 等. 应急遥感制图中敏感目标自动检测与隐藏方法[J]. 武汉大学学报(信息科学版), 2020, 45(8):1263-1272.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|