Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (6): 1404-1413    DOI: 10.11873/j.issn.1004-0323.2020.6.1404
数据与图像处理     
基于互导滤波和显著性映射的红外可见光图像融合
周怡(),马佳义,黄珺()
武汉大学 电子信息学院,湖北 武汉 430072
Infrared and Visible Image Fusion based on Mutually Guided Filtering and Saliency Map
Yi Zhou(),Jiayi Ma,Jun Huang()
School of Electronic Information,Wuhan University,Wuhan 430072,China
 全文: PDF(7054 KB)  
摘要:

为了解决传统多尺度红外可见光融合图像边缘模糊、对比度低和目标不显著的问题,提出一种基于互导滤波和显著性映射的红外可见光图像融合算法。由于互导滤波器能将图像一致结构和不一致结构分离并且具有尺度和保边意识,因此首先利用互导滤波器将原图像分解为具有冗余信息的结构层和不同尺度上具有互补信息的纹理层;其次根据过明或过暗区域更容易引起注意的视觉特点构造图像显著性映射函数对结构层和不同尺度的纹理层进行显著性映射;最后根据不同尺度的结构和纹理特性对图像进行融合重构。在两个数据集上的实验结果表明与传统的多尺度融合方法相比提出的方法在保持图像边缘、增强图像对比度、突出目标方面具有较好的主客观评价效果。

关键词: 互导滤波器显著性映射多尺度融合红外    
Abstract:

In order to solve the problems of traditional multi-scale infrared visible fusion image with blurred edges, low contrast and inconspicuous targets, an infrared visible image fusion algorithm based on mutually guided filtering and saliency map is proposed. Firstly, the original images are decomposed into structure layers with redundant information and texture layers with complementary information at different scales by means of mutually guided filter, because the filter can separate the consistent structure from the inconsistent structure, and has the awareness of scale and edge preservation. Secondly, the visual saliency map function is constructed to map saliency of structure layers and texture layers of different scales according to the visual characteristics of the over-light or over-dark regions that are more likely to attract attention. Finally, according to the structure and texture characteristics of different scales, the final fusion image is reconstructed. The experimental results on two data sets show that compared with the traditional multi-scale fusion methods, the proposed method has a better subjective and objective evaluation effect in maintaining the image edge, enhancing the image contrast and highlighting the target.

Key words: Mutually guided filter    Saliency map    Multi-scale fusion    Infrared
收稿日期: 2019-11-28 出版日期: 2021-01-26
ZTFLH:  TP75  
基金资助: 国家自然科学基金项目(61605146);湖北省自然科学基金项目(2019CFA037)
通讯作者: 黄珺     E-mail: 2017202120122@whu.edu.cn;junhwong@whu.edu.cn
作者简介: 周怡(1994-),女,福建南平人,硕士研究生,主要从事红外可见光图像融合技术研究。E?mail: 2017202120122@whu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周怡
马佳义
黄珺

引用本文:

周怡,马佳义,黄珺. 基于互导滤波和显著性映射的红外可见光图像融合[J]. 遥感技术与应用, 2020, 35(6): 1404-1413.

Yi Zhou,Jiayi Ma,Jun Huang. Infrared and Visible Image Fusion based on Mutually Guided Filtering and Saliency Map. Remote Sensing Technology and Application, 2020, 35(6): 1404-1413.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.6.1404        http://www.rsta.ac.cn/CN/Y2020/V35/I6/1404

1 Ma J, Ma Y, Li C. Infrared and Visible Image Fusion Methods and Applications: A Survey[J]. Information Fusion, 2019, 45: 153-178.doi:10.1016/j.inffus.2018.02.004.
doi: 10.1016/j.inffus.2018.02.004
2 Zhang Xiaofeng, Lu Xiaoqi, Zhang Xinxue,et al. Data Fusion and Visualization of Multi-time Ocean Color Remote Sensing Data[J]. Remote Sensing Technology and Application,2018,33(5): 873-880.
doi: 10.11873/j.issn.1004-0323.2018.5.0873
2 张晓峰, 吕晓琪, 张信雪, 等.多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.]. doi: 10.11873/j.issn.1004-0323.2018.5.0873.
doi: 10.11873/j.issn.1004-0323.2018.5.0873
3 Li Y, Jha D K, Ray A, et al. Information Fusion of Passive Sensors for Detection of Moving Targets in Dynamic Environments[J]. IEEE Transactions on Cybernetics, 2016, 47(1): 93-104.doi:10.1109/TCYB.2015.2508024.
doi: 10.1109/TCYB.2015.2508024
4 Muller A C, Narayanan S. Cognitively-engineered Multisensor Image Fusion for Military Applications[J]. Information Fusion, 2009, 10(2): 137-149.doi:10.1016/j.inffus. 2008. 08.008.
doi: 10.1016/j.inffus. 2008. 08.008
5 Meher B, Agrawal S, Panda R, et al. A Survey on Region based Image Fusion Methods[J]. Information Fusion, 2019, 48: 119-132. doi:10.1016/j.inffus.2018.07.010.
doi: 10.1016/j.inffus.2018.07.010
6 Sharma A M, Vig R, Dogra A, et al. A Comparative Analysis of Transforms for Infrared and Visible Image Fusion[M].Intelligent Communication, Control and Devices. Springer, Singapore, 2020: 85-93.doi:10.1007/978-981-13-8618-3_10.
doi: 10.1007/978-981-13-8618-3_10
7 Toet A. Image Fusion by a Ratio of Low-pass Pyramid[J]. Pattern Recognition Letters, 1989, 9(4): 245-253.
8 Bulanon D M, Burks T F, Alchanatis V. Image Fusion of Visible and Thermal Images for Fruit Detection[J]. Biosystems Engineering, 2009, 103(1): 12-22.doi:10.1016/j.biosystemseng.2009.02.009.
doi: 10.1016/j.biosystemseng.2009.02.009
[1] 张晓光,姜子璇,孔繁昌. 滨海盐渍土可见近红外高光谱特征[J]. 遥感技术与应用, 2019, 34(4): 816-821.
[2] 田慧慧, 冯 莉, 赵璊璊, 郭 松, 董继伟. 无人机热红外城市地表温度精细特征研究 [J]. 遥感技术与应用, 2019, 34(3): 553-563.
[3] 罗庆洲, 朱传武, 王培法. 使用MODIS近红外图像直接计算地表水汽压的研究—以贵州省为例[J]. 遥感技术与应用, 2019, 34(2): 398-403.
[4] 刘亲亲, 崔耀平, 刘素洁, 李楠. 中国不同土地利用类型分光辐射地表反照率研究[J]. 遥感技术与应用, 2019, 34(1): 46-56.
[5] 于惠,吴玉锋,金毅,张峰. 基于MODIS SWIR数据的干旱区草地地上生物量反演及时空变化研究[J]. 遥感技术与应用, 2017, 32(3): 524-530.
[6] 王猛猛,何国金,张兆明,王桂周,尹然宇,龙腾飞. 基于Landsat 8 TIRS数据的大气水汽含量反演劈窗算法[J]. 遥感技术与应用, 2017, 32(1): 166-172.
[7] 李梦云,黄方. 基于SPOT-VGT可见光/短波红外波段数据对AMSR-E土壤湿度的降尺度研究[J]. 遥感技术与应用, 2016, 31(2): 342-348.
[8] 高小红,杨扬,张威,贾伟,李金山,田成明,张艳娇,杨灵玉,何林华. 可见光—近红外光谱估算三江源区不同土壤全氮含量[J]. 遥感技术与应用, 2015, 30(5): 849-859.
[9] 李盼盼,李兆富. 基于HJ-1B卫星数据的南京市地表温度反演研究[J]. 遥感技术与应用, 2015, 30(4): 653-660.
[10] 赵志强,李爱农,边金虎,郭文静,刘倩楠,赵伟,黄成全. 山区可见光—近红外遥感影像浓密植被暗像元自动识别方法研究[J]. 遥感技术与应用, 2015, 30(1): 58-67.
[11] 刘伟伟,唐伯惠,吴骅. 热红外载荷辐射性能评价系统设计与实现[J]. 遥感技术与应用, 2014, 29(6): 1046-1053.
[12] 潘佩芬,杨武年,戴晓爱,郑菠. 不同森林植被的高光谱特征分析[J]. 遥感技术与应用, 2013, 28(6): 1000-1005.
[13] 张 勇,戎志国,闵 敏,张玉香. 风云二号气象卫星红外通道交叉辐射定标光谱匹配[J]. 遥感技术与应用, 2013, 28(5): 844-849.
[14] 曹广真,张鹏,陈林,郑照军,胡秀清. 地面能见度观测在卫星遥感IDDI指数中的融合应用[J]. 遥感技术与应用, 2013, 28(4): 588-593.
[15] 胡永红,贾根锁. 基于Landsat影像的ALEXI模型小流域验证[J]. 遥感技术与应用, 2013, 28(2): 192-199.