Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (3): 521-532    DOI: 10.11873/j.issn.1004-0323.2021.3.0521
森林遥感专栏     
多源时序国产卫星影像的森林火灾动态监测
曾超1,2(),曾珍1,2,曹振宇1,2,邹强3,余长锡1
1.自然资源部四川基础地理信息中心,四川 成都 610041
2.自然资源部应急测绘技术创新中心,四川 成都 610041
3.中国科学院、水利部成都山地灾害与环境研究所,四川 成都 610041
Forest Fire Dynamic Monitoring based on Time Series and Multi-source Satellite Images: A Case Study of the Muli County Forest Areas in Sichuan Province
Chao Zeng1,2(),Zhen Zeng1,2,Zhenyu Cao1,2,Qiang Zou3,Changxi Yu1
1.Sichuan Geomatics Center,Chengdu 610041,China
2.Emergency Surveying and Mapping Technology Innovation Center,MNR,Chengdu 610041,China
3.Institute of Mountain Hazards and Environment,Chinese Academy of Sciences and Ministry of Water Conservancy,Chengdu 610041,China
 全文: PDF(11249 KB)   HTML
摘要:

四川省木里县及周边林区是全国林火最为高发和易发区之一,近两年连续发生了扑火人员重大伤亡的事件。利用时序国产卫星影像、无人机影像和现场勘查数据等,从监测火灾蔓延时空过程的角度,对该区林火热点进行了动态监测,并分析了重点火场火灾发展过程,结果表明:以国产GF-4卫星影像为主,辅助以2 m/8 m光学卫星星座影像,可较好地监测林火热点;研究提出林火热点判定阈值为白天亮温值T≥360 K或夜间亮温值T≥330 K;监测发现了该区3月30日至4月6日间共6处火场的25次林火事件,并重点反演了①号木里和②号西昌火灾发展的时空过程。通过将卫星监测热点与现场勘查热点、无人机影像解译热点对比,表明在火灾早期和中期卫星林火热点监测精度可达89%。建议利用时序国产多源卫星影像对该区林火进行持续监测,并结合权威部门现场勘查数据适时发布预警信息,避免造成重大生命财产损失。

关键词: 多源时序卫星影像森林火灾热点动态监测蔓延分析四川木里县西昌市    
Abstract:

Muli County and its surrounding areas in Sichuan Province are one of the most frequent and vulnerable forest fire areas in the China. In the past two years, there have been serious casualties of firefighters in forest fire fighting. In this paper, time-series and multi-source satellites images, UAV images and disaster site survey data are used to monitor the forest fire hot spot dynamically, and the process of fire spread in Muli County were analyzed. The results show that: The GF-4 Satellite images and 2 m/8 m optical satellite constellation images, which can be used for forest fire hotspots monitoring effetely. We believe that the grid can be determined as the forest fire hotspot, while the grid temperature value T≥360 K in the daytime or temperature value T≥330 K in the nighttime. 25 forest fire incidents in 6 fire sites were found and monitor from March 30 to April 6 in the area, and the progress of the fire in Muli and Xichang County were also investigated with the hot spot. Compared with the high-resolution unmanned aerial vehicle images and the collecting hot spot data of fire site, it shows that the accuracy of satellite forest fire hotspot monitoring can reach 89%. It is recommended to use time-series and multi-source satellite images to monitor the forest fires in this area continuously, and combine the fire site survey data of authoritative departments for timely fire warning. It is also suggesting that combine meteorological, topographic, vegetation and human factors to carry out fire cause analysis and risk assessment studies, to avoid causing loss of life and property again.

Key words: Multi-source and time series satellite imagery    Forest fire detection    Forest fire dynamic monitoring    Forest fire spread analysis    Muli County    Xichang County
收稿日期: 2020-07-27 出版日期: 2021-07-22
ZTFLH:  S762.2  
基金资助: 国家对地观测科学数据中心开放基金项目(DAOP2020020);四川省科学技术厅省级科技计划—应用基础研究项目(19YYJC0660)
作者简介: 曾超(1986-),男,重庆云阳人,博士研究生,高级工程师,主要从事山地灾害遥感与风险评估方面的研究。E?mail: zeng3chao@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曾超
曾珍
曹振宇
邹强
余长锡

引用本文:

曾超,曾珍,曹振宇,邹强,余长锡. 多源时序国产卫星影像的森林火灾动态监测[J]. 遥感技术与应用, 2021, 36(3): 521-532.

Chao Zeng,Zhen Zeng,Zhenyu Cao,Qiang Zou,Changxi Yu. Forest Fire Dynamic Monitoring based on Time Series and Multi-source Satellite Images: A Case Study of the Muli County Forest Areas in Sichuan Province. Remote Sensing Technology and Application, 2021, 36(3): 521-532.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.3.0521        http://www.rsta.ac.cn/CN/Y2021/V36/I3/521

图1  研究区范围图
数据类型拍摄日期拍摄时间数量(景)用途
GF-4(共25景;白天为PMI数据;夜间为IRS数据)3月30日11:26;16:402卫星林火热点监测
3月31日4:46;11:27;15:01;20:114
4月1日11:31;13:41;16:41;20:254
4月2日4:46;13:37;20:123
4月3日4:46;11:31;20:113
4月4日4:47;11:31;16:41;20:114
4月5日4:46;11:272
4月6日4:46;11:31;14:573
2 m/8 m光学卫星星座(共9景)3月9日12:171林火热点目视解译
3月30日12:301
3月31日12:221
4月1日12:13;11:572
4月2日12:041
4月4日12:191
4月6日12:021
4月15日12:221
H1C卫星影像(共1景)4月4日11:591林火热点目视解译
ZY-3卫星(灾前共2景)2019年3月22日2数据预处理
表1  选取的卫星影像数据表
数据类型拍摄地点拍摄时间视频时长/min影像面积/km2
视频数据(白天为可见光;夜间为红外视频)木里县乔瓦镇、项脚乡3月30日21时37.45
木里县李子坪乡3月31日11时41.75
木里县白碉乡4月1日10时25.00
西昌市泸山火场3月30日22时21.00
西昌市泸山火场3月31日4时36.83
可见光影像木里县白碉乡4月3日10时40
木里县4月5日10时218
西昌市泸山火场4月1日19时25
西昌市泸山火场4月2日7时14
表2  选取的无人机航摄数据
图2  林火热点监测技术流程
图3  基于卫星和无人机航空影像的林火热点目视解译结果(图3(a)~(e):2 m/8 m光学卫星星座波段4、3、2合成假彩色影像,图4(f):无人机RGB航摄影像)
2 m/8 m卫星星座影像GF-4卫星影像亮温
样本类型样本数量样本影像获取时间IRS影像获取时间最小值最大值平均值
火点13月30日12:303月30日11:26383.21383.35383.28
火点14月1日11:574月1日13:41383.53384.83384.18
烟点93月30日12:303月30日11:26369.96383.21378.98
烟点153月31日12:223月31日15:01359.94384.35382.38
烟点104月1日11:574月1日13:41364.40384.53378.47
烟点64月4日12:194月4日11:31362.77372.87370.50
表3  林火热点目视解译样本及对应的亮温值
图4  研究区卫星林火热点动态监测结果(①号火场底图为4月15日12:22的2 m/8 m光学卫星星座影像;②号火场底图为4月6日12:02的2 m/8 m光学卫星星座影像;③、④和⑤号火场底图为4月5日11:27的GF-4影像;⑥号火场底图为4月4日11:59的H1C卫星影像)
图5  重点火场卫星林火热点像元数量变化(①~⑥对应了图4中的火场编号)
图6  ①号木里火场的火灾发展时空过程
图7  ②号西昌火场的火灾发展时空过程
图8  卫星监测热点与无人机影像解译、现场勘查热点对比结果
1 Li Weiqiang. Causes of Forest Fires and Prevention and Control Measures—A Case Study of “3.30” Fire in Muli County[J]. Journal of Sichuan Forestry Science and Technology, 2019, 40(4): 108-111.
1 李维强. 森林火灾的成因及防控对策—以“3·30”木里火灾为例[J]. 四川林业科技, 2019, 40(4): 108-111.
2 Peng Yu, Cai Bangcheng. Review of Forest Fire Monitoring and Interrelated Technology[J]. Journal of Anhui Agricultural Sciences, 2014, 42(32): 11355-11357.
2 彭禹, 蔡邦成. 森林火灾监测及相关技术综述[J]. 安徽农业科学, 2014, 42(32): 11355-11357.
3 Zheng Wei, Chen Jie Yan Hua, et al. Global Fire Monitoring Products of FY-3D/MERSI-II and Their Applications[J]. Journal of Remote Sensing, 2020, 24(5): 521-530.
3 郑伟, 陈洁, 闫华, 等. FY-3D/MERSI-II全球火点监测产品及其应用[J]. 遥感学报, 2020, 2424(5): 521-530.
4 Zhan Jianfeng, Fan Chong, Li Tao. A Forest Firespot Automatic Detection Algorithm for HJ-IRS Imagery[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1321-1324.
4 詹剑锋, 范冲, 李陶. 一种利用 HJ-IRS 影像的林火火点自动检测算法[J]. 武汉大学学报信息科学版, 2012, 37(11): 1321-1324.
5 Dozier J. A Method for Satellite Identification of Surface Temperature Fields of Subpixel Resolution[J]. Remote Sensing of Environment, 1981, 11: 221-229.
6 Matson M S, Schneider R, Aldridge, et al. Fire Detection Using the NOAA Series Satellites[R]. NOAA-NESS Technical Report 7, Washington:1984, 7, 34.
7 Flannigan M D, Vonder Haar T H. Forest Fire Monitoring Using NOAA Satellite AVHRR[J]. Canadian Journal of Forest Research, 1986, 16: 975-982. doi: 10.1139/x86-171.
doi: 10.1139/x86-171
8 Kaufman Y J, Justice C O, Flynn L P, et al. Potential Global Fire Monitoring from EOS-MODIS[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D24): 32215-32238.
9 Lee T F, Tag P M. Improved Detection of Hotspots Using the AVHRR 3.7 μm Channel[J]. Bulletin of the American Meteorological Society,1990,71(12):1722-1730. doi: 10.1175/1520-0477(1990)071<1722:IDOHUT>2.0.CO;2.
doi: 10.1175/1520-0477(1990)071<1722:IDOHUT>2.0.CO
10 Dwyer E, Grégoire J M, Malingreau J P. A Global Analysis of Vegetation Fires Using Satellite Images: Spatial and Temporal Dynamics[J]. Ambio, 1998, 27(3): 175-181.
11 Chuvieco E, Martin M P. A Simple Method for Are Growth Mapping Using AVHRR Channel 3 Data[J]. Remote Sensing,1994,15(16):3141-3146. doi:10.1080/014311694089 54316.
doi: 10.1080/014311694089 54316
12 Giglio L, Kendall J D, Justice C O. Evaluation of Global Fire Detection Algorithms Using Simulated AVHRR Infrared Data[J]. International Journal of Remote Sensing, 1999, 20(10): 1947-1985. doi: 10.1080/014311699212290.
doi: 10.1080/014311699212290
13 Boles S H, Verbyla D L. Comparison of Three AVHRR-based Fire Detection Algorithms for Interior Alaska[J]. Remote Sensing of Environment, 2000, 72(1): 1-16.
14 Fraser R H, Li Z, Cihlar J. Hotspot and NDVI Differencing Synergy (HANDS): A New Technique for Burned Area Mapping over Boreal Forest[J]. Remote Sensing of Environment, 2000, 74(3): 362-376.
15 Giglio L, Descloitres J, Justice C O, et al. An Enhanced Contextual Fire Detection Algorithm for MODIS[J]. Remote Sensing of Environment, 2003, 87(2-3):273-82.
16 Giglio L, Schroeder W, Justice C O. The Collection 6 MODIS Active Fire Detection Algorithm and Fire Products[J]. Remote Sensing of Environment, 2016, 178: 31-41.
17 Qin Xianlin, Zhang Zihui, Li Zengyuan. An Automatic Forest Fires Identification Method Using HJ-1B IRS Data[J]. Remote Sensing Technology and Application, 2013, 25(5): 700-706.
17 覃先林, 张子辉, 李增元.一种利用HJ-1B红外相机数据自动识别林火的方法[J]. 遥感技术与应用, 2013, 25(5): 700-706.
18 Li Jiaguo, Gu Xingfa, Yu Tao. Detection of Australian Southeast Forest Fire Using HJ Satellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(10): 1221-1224.
18 李家国, 顾行发, 余涛. 澳大利亚东南部森林山火HJ卫星遥感监测[J]. 北京航空航天大学学报, 2010, 36(10): 1221-1224.
19 Liu Shuchao, Li Xiaotong, Qin Xianlin, et al. Adaptive Threshold Method for Active Fire Identification based on GF-4 PMI Data[J]. Journal of Remote Sensing, 2020, 24(3): 215-225.
19 刘树超, 李晓彤, 覃先林, 等. GF-4 PMI 影像着火点自适应阈值分割[J]. 遥感学报, 2020, 24(3): 215-225.
20 Rao Yueming,Wang Chuan, Huang Huaguo. Forest Fire Monitoring based on Multisensor Remote Sensing Techniques in Muli County, Sichuan Province[J]. Journal of Remote Sensing, 2020, 24(5): 559-570.
20 饶月明, 王川, 黄华国. 联合多源遥感数据监测四川木里县森林火灾[J]. 遥感学报, 2020,24(5): 559-570.
21 Deng Wuxi, Xia Xiaozhu. Analysis of the State of Forest Fires in Muli County and Their Precaution Measures[J]. Journal of Sichuan Forestry Science and Technoligy, 2009, 30(6): 130-134.
21 邓武喜, 夏筱竹. 木里县森林火情分析及防范措施[J]. 四川林业科技, 2009, 30(6): 130-134.
22 Qin Xianlin, Li Xiaotong, Liu Shuchao, et al. Forest Fire Early Warning and Monitoring Techniques Using Satellite Remote Sensing in China[J]. Journal of Remote Sensing, 2020,24(5):511-520.
22 覃先林, 李晓彤, 刘树超, 等. 中国林火卫星遥感预警监测技术研究进展[J]. 遥感学报, 2020, 24(5): 511-520.
23 Zhou Yufei, Li Xingwei, Wang Zhenshi, et al. The Research on Algorithm for Identifying Early Forest Fire of Infrared Thermal Imager[J]. Forest Resources Management,2012(5): 119-124.
23 周宇飞, 李兴伟, 王振师, 等. 红外热成像仪早期林火识别算法研究[J]. 林业资源管理, 2012(5):119-124.
[1] 张婕,张文煜,冯建东,王宏义,于泽,宋玮. 基于亮温—植被指数—气溶胶光学厚度的MODIS火点监测算法研究[J]. 遥感技术与应用, 2016, 31(5): 886-892.
[2] 覃先林, 张子辉, 李增元. 一种利用HJ\|1B 红外相机数据自动识别林火的方法[J]. 遥感技术与应用, 2010, 25(5): 700-706.
[3] 覃先林,李增元,易浩若,陈尔学,庞 勇. 基于ENVISAT-MERIS数据的过火区制图方法研究[J]. 遥感技术与应用, 2008, 23(1): 1-6.
[4] 覃先林,张子辉,李增元,易浩若. 基于AATSR数据的东北林火识别方法研究[J]. 遥感技术与应用, 2007, 22(4): 479-484.
[5] 周小成, 汪小钦. EOS—MODIS 数据林火识别算法的验证和改进[J]. 遥感技术与应用, 2006, 21(3): 209-211.
[6] 覃先林,易浩若,纪 平. AVHRR数据小火点自动识别方法的研究[J]. 遥感技术与应用, 2000, 15(1): 36-40.
[7] 易浩若 纪 平. 森林过火面积的遥感测算方法[J]. 遥感技术与应用, 1998, 13(2): 10-14.
[8] 易浩若 , 纪平 ,何筏萍 ,张彦忠 . 林火卫星遥感监测及早期报警技术研究[J]. 遥感技术与应用, 1996, 11(1): 40-46.
[9] 范建容 周万村 高世忠 郭洁. 遥感与模糊评判在森林火灾后生态监测评价中的应用[J]. 遥感技术与应用, 1995, 10(4): 42-47.
[10] 刘志明. 森林火灾的气象卫星监测方法[J]. 遥感技术与应用, 1991, 6(3): 20-23.