Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (3): 663-672    DOI: 10.11873/j.issn.1004-0323.2021.3.0663
遥感应用     
基于星载宽刈幅散射计的海面舰船目标检测方法与识别
马剑英(),朱迪()
中国科学院国家空间科学中心,中国科学院微波遥感技术重点实验室,北京 100190
Ship Target Detection and Recognition Method based on Wide Swath Spaceborne Scatterometer
Jianying Ma(),Di Zhu()
National Space Science Center,Chinese Academy of Science,Key Laboratory of Microwave Remote Sensing,Beijing 100190,China
 全文: PDF(2845 KB)   HTML
摘要:

针对全球海面舰船目标检测的需求,结合宽刈幅与方位高分辨的需求,提出了一种基于星载宽刈幅散射计的海面舰船目标检测方法。该方法使用扇形波束旋转扫描散射计,发射宽带线性调频信号,对回波信号进行方位高分辨,海面目标二维检测,得到舰船的多次观测信息。使用方位角、多普勒频率、高分辨距离像等观测数据,计算船长、船速、与卫星运动方向夹角,并对舰船类型进行初步分类识别,实现辅助检测的功能。仿真结果表明:该方法能够实现对海面舰船的检测,得到有效的舰船信息,具备辅助检测的能力,对未来星载雷达海面舰船目标检测与识别提供了可实现的路径。

关键词: 散射计舰船目标方位高分辨二维检测舰船信息计算    
Abstract:

Meeting the expectation of ship targets detection on sea surface, considering the need of wide swath and high resolution of azimuth, a method for detecting ship targets on sea surface based on wide swath spaceborne scatterometer is proposed. In this method, the scatterometer uses a sector beam rotating scanning antenna, transmits wideband LFM signal, carries out azimuth high-resolution processing and two-dimensional ship target detection on sea surface, and finally the ship target observation data in multi azimuth are obtained. Using observation data, such as azimuth, Doppler frequency and one dimensional high resolution range image, ship length, ship speed and the included angle with satellite movement direction are calculated, ship type is preliminarily and recognition, the function of auxiliary detection is realized. The simulation results show that this method can detect the ships on the sea, get the effective ship information, and expand the ability of auxiliary detection.Furthermore,we present suggestions for the future research to improve the ability of Ship Target Detection and Recognition.

Key words: Scatterometer    Ship target    Azimuth high resolution    Two dimensional detection    Ship information calculation
收稿日期: 2019-12-10 出版日期: 2021-07-22
ZTFLH:  TP732.1  
通讯作者: 朱迪     E-mail: majianying@mirslab.cn;zhudi@mirslab.cn
作者简介: 马剑英(1981-),女,河北石家庄人,工程师,主要从事微波遥感成像与探测理论研究。E?mail: majianying@mirslab.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马剑英
朱迪

引用本文:

马剑英,朱迪. 基于星载宽刈幅散射计的海面舰船目标检测方法与识别[J]. 遥感技术与应用, 2021, 36(3): 663-672.

Jianying Ma,Di Zhu. Ship Target Detection and Recognition Method based on Wide Swath Spaceborne Scatterometer. Remote Sensing Technology and Application, 2021, 36(3): 663-672.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.3.0663        http://www.rsta.ac.cn/CN/Y2021/V36/I3/663

图1  4种舰船模型仿真示意图
图2  液货船在各方位角时的高分辨距离像
图3  散射计观测几何
图4  散射计旋转扫描观测示意图
图5  算法流程图
图6  极坐标格式算法几何模型
图7  方位重采样示意图
图8  恒虚警检测示意图
图9  恒虚警检测算法示意图
图10  自适应门限检测示意图
图11  舰船运动模型示意图
参数单位
信号时宽100 us
信号带宽660 MHz
发射信号频率9.6 GHz
采样频率600 MHz
斜视角60°
重复频率460 Hz
卫星高度450 km
卫星地面速度7 500 m/s
天线至海面斜距1 200 km
表1  散射计参数设置
图12  舰船方位高分辨结果
图13  二维恒虚警检测结果
图14  自适应门限检测结果
图15  舰船高分辨距离像
船名均方根误差
船长船速与卫星运动方向夹角
液货船16.75%9.84%9.36%
油轮14.23%8.55%7.58%
杂货船14.24%7.37%6.68%
散货船15.9%6.54%4.82%
表2  辅助信息计算均方根误差结果
正确率拒判率
散货船81.11%18.89%
杂货船82.22%17.78%
油轮85.56%14.44%
液货船87.22%12.78%
表3  最大相关法分类识别结果
1 Merrill I. Radar Handbook[M]. Beijing: Publishing House Of Electronics Industry, 2010.
1 Merrill I.雷达手册[M].北京:电子工业出版社,2010.
2 Wang Chao, Zhang Hong, Wu Fan, et al. Review on Power System Transient Stability Control Technologies based on PMU/WAMS[M]. Beijing: Science Press,2013.王超,张红,吴樊,等,高分辨率SAR图像舰船目标检测与分类[M].北京:科学出版社,2013.
3 Zhang Qingjun, System Design and Key Technologies of the GF-3 Satellite[J]. Acta Geodaetica et Cartographica Sinica,2017,46(3):269-277.
3 [张庆君,高分三号卫星总体设计与关键技术[J].测绘学报,2017,46(3):269-277.
4 Leopold L J C. Space-based Radar Handbook[M]. Beijing,Publishing House of Electronics Industry, 2005.Leopold L J C.星载雷达手册[M].北京:电子工业出版社,2005.
5 Wang Gang, Dong Xiaolong, Zhu Di,High Resolution Implementation based on Scanning Spaceborne Radar[J]. Remote Sensing Technology and Application,2017,32(6):1071-1077.
5 [王刚,董晓龙,朱迪,基于星载旋转扫描雷达的高分辨率实现[J].遥感技术与应用,2017,32(6):1071-1077.
6 Liu Liling. High Azimuth-Resolution Processing of Spaceborne Scanning Mirowave Scatterometr[D]. Beijing: National Space Science Center,Chinese Academy of Sciences,2017.
6 刘丽玲.星载扫描微波散射计方位向高分辨处理方法研究[D].北京:中国科学院国家空间科学中心,2017.
7 Zhuang Zhaowen,Wang Xusong,Li Xiang, et al. Radar Target Recognition[M].Beijing: Higher Education Press ,2014.庄钊文,王雪松,黎湘,等.雷达目标识别[M].北京:高等教育出版社,2014.
8 Wei Cunwei, Liu Xiankang, Sun Fei, et al. A Method of Ship Target Recognition based on HRRP[J]. Electronic Science,2017,30(11):13-16.
8 魏存伟,刘先康, 孙菲,等,一种基于雷达HRRP的舰船目标识别方法[J].电子科技,2017,30(11):13-16.
9 Lin Mingsen, He Xianqiang, Jia Yongjun,et al. Advances in Marine Satellite Remote Sensing Technology in China[J]. Haiyang Xuebao, 2019, 41(10):99-112.
9 林明森,何贤强,贾永君,等. 中国海洋卫星遥感技术进展海洋卫星应用遥感技术进展[J].海洋学报,2019, 41(10):99-112.
10 Lin Youquan, Spaceborne Radar Systems for Ocean Surveillance[J]. Modern Radar, 2012,34(11):6-10.
10 [林幼权,星载海洋监视雷达系统[J].现代雷达, 2012,34(11):6-10.
11 Keith W, Robert T, Simon W. Sea Clutter: Scattering, the K Distribution and Radar Performance[M]. Beijing:Publishing House of Electronics Industry, 2016.Keith Ward, Robert Tough, Simon Watts.海杂波:散射、K分布和雷达性能[M].北京:电子工业出版社,2016.
12 Mao Xinhua. Study on the Application of PFA in SAR Ultra-high Resolution Imaging and SAR/GMTI[D].Nanjing:Nanjing University of Aeronautics and Stronautics The Graduate School,2009.
12 毛新华.PFA在SAR超高分辨率成像和SAR/GMTI中的应用研究[D].南京:南京航空航天大学,2009.
13 Lin Wenming. Study on Spaceborne Rotating, Range-gated, Fanbeam Scatterometer System[D]. Beijing:Graduate University Chinese Academy of Sciences,2011.
13 林文明.星载扇形波束扫描微波散射计系统研究[D].北京:中国科学院研究生院,2011.
14 Xu Cheng bin,Zhou Wei,Cong Yu,et al.Ship Analysis and Detection in High-resolution PolSAR Imagery based on Peak Zone[J].Journal of Radars, 2014,4(8):367-373.
14 许成斌,周伟,丛瑜等,基于峰值区域的高分辨率极化SAR舰船目标特征分析与鉴别[J].雷达学报,2014,4(8):367-373.
15 Zhang Feng li,Zhang Lei,Wu Bingfang,Process of Ship Detection Technology and System based on Remote Sensing Technology in European Union[J]. Journal of Remote Sensing, 2007,11(4):552-562.
15 张风丽,张磊,吴炳方,欧盟船舶遥感探测技术与系统研究的进展[J].遥感学报,2007,11(4):552-562.
16 He Zi, Chen Rushan. Study on Efficient High Frequency Method of Electromagnetic Scattering from Ship above Sea Surface[J]. Journal of Radars, 2019,8(3):319-325.
16 何姿,陈如山.三维随机粗糙海面与舰船的复合电磁特性的高频方法分析研究[J].雷达学报,2019,8(3):319-325.
17 Li Qing,Li Bin,Hu Wenjun,et al. Ship Target Classification based on the Low Bandwidth Marine Radar[J]. Modern Radar, 2012,34(12): 45-49.
17 [李青,李斌,胡文俊等,基于低分辨率雷达的海面舰船目标分类识别技术[J].现代雷达,2014,34(12):45-49.
18 Sun Mingzhu,Jia Li,Wu ling.Usability Analysis of High-resolution SAR Satellite Image Ship Target Recognition[J].Journal of Jiamusi University(Natural Science Edition),2021,39(1):131-133.
18 孙明珠,贾丽,吴翎.高分辨率SAR卫星图像舰船目标识别可用性分析[J]佳木斯大学学报(自然科学版),2021,39(1):131-133.
19 Song Penghan,Xin Huaisheng,Liu Nannan.Ship Targets Recognition based on Deep Learning Multi-source Feature Fusion[J].Journal of CAEIT,2021,16(2):127-133.
19 宋鹏汉,辛怀声,刘楠楠.基于深度学习的海上舰船目标多源特征融合识别[J].中国电子科学研究院学报,2021,16(2):127-133.
20 Wang Xiaodi.Ship Target Recognition based on Remote Sensing Information[J].Ship Science and Technology,2020,42(24):82-84.
20 王晓迪.基于遥感信息的舰船目标识别[J].舰船科学技术,2020,42(24):82-84.
[1] 熊伟,徐永力,姚力波,崔亚奇. 基于SVM的高分辨率SAR图像舰船目标检测算法[J]. 遥感技术与应用, 2018, 33(1): 119-127.
[2] 王刚,董晓龙,朱迪. 基于星载旋转扫描雷达的高分辨率实现[J]. 遥感技术与应用, 2017, 32(6): 1071-1077.
[3] 陈坤堂,董晓龙,徐星欧,郎姝燕. 微波散射计反演海面风场的神经网络方法研究[J]. 遥感技术与应用, 2017, 32(4): 683-690.
[4] 张焱,李新武,梁雷. 基于微波散射计的格陵兰冰盖冻融探测方法研究[J]. 遥感技术与应用, 2017, 32(1): 113-120.
[5] 林溢园,邹巨洪,林明森,何原荣. 多源星载微波散射计海面风场信息融合研究[J]. 遥感技术与应用, 2017, 32(1): 126-132.
[6] 过杰,何宜军,张彪,Vladimir Yurjevich Karaev,M.A.Panfilova,Yuriy Titchenko. 基于散射计波浪参数反演模型的改进算法实验[J]. 遥感技术与应用, 2016, 31(5): 907-911.
[7] 贾楠,张祥坤,刘和光,蔡永俊. Ku波段成像散射计后向散射系数精度分析[J]. 遥感技术与应用, 2016, 31(3): 497-503.
[8] 何佳宁,郭伟,朱迪,赵飞. 基于回波模拟器的CFOSAT散射计校飞模式定标研究[J]. 遥感技术与应用, 2015, 30(4): 731-736.
[9] 云婷,董晓龙. 星载微波散射计高分辨率σ0图像重构方法研究[J]. 遥感技术与应用, 2015, 30(3): 495-503.
[10] 张毅,蒋兴伟,宋清涛. 基于外部风向初始信息的SAR影像海面风场反演研究[J]. 遥感技术与应用, 2011, 26(4): 461-468.
[11] 张毅, 林明森, 蒋兴伟.  神舟4号(SZ-4)多模态遥感器散射计数据预处理及Sigma-0数据显示[J]. 遥感技术与应用, 2009, 24(6): 801-805.
[12] 朱素云,刘 浩,董晓龙. 海洋二号有效载荷微波散射计数据处理系统的设计[J]. 遥感技术与应用, 2007, 22(2): 152-154.
[13] 杨吉龙,张雪虎,陈秀万,柯樱海, Daniel Esteban,James Carswell,David J McLaughlin, Paul Chang. 降雨影响散射计测风的初步研究[J]. 遥感技术与应用, 2005, 20(1): 157-161.
[14] 张德海, 姜景山, 郑震藩, 王拴荣, 刘和光, 孙 波, 张升伟, 许 可. 神舟4 号主载荷—多模态微波遥感器[J]. 遥感技术与应用, 2005, 20(1): 74-80.
[15] 张云华, 姜景山, 张祥坤, 孙 波, 付文君. 神舟4号多模态微波遥感器散射计分系统[J]. 遥感技术与应用, 2005, 20(1): 58-63.