Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (3): 682-691    DOI: 10.11873/j.issn.1004-0323.2021.3.0682
遥感应用     
FY-3C MWRI在轨交叉辐射定标
曾子倩(),蒋耿明()
复旦大学电磁波信息科学教育部重点实验室,上海 200433
Intercalibration of the Microwave Radiation Imager on Fengyun 3C
Ziqian Zeng(),Gengming Jiang()
Key Laboratory of Information Science for Electromagnetic Waves,Ministry of Education,Fudan University,Shanghai 200433,China
 全文: PDF(6577 KB)   HTML
摘要:

精确辐射定标是定量遥感的基础。以搭载在全球降水测量(Global Precipitation Measure-ment,GPM)卫星上的微波成像仪(GPM Microwave Imager, GMI)为辐射基准,用双差异(Double Difference, DD)方法对搭载在我国风云三号C星(Fengyun 3C, FY-3C)上的微波成像仪(Microwave Radiation Imager, MWRI)进行在轨交叉辐射定标。首先,将FY-3C MWRI数据、GMI数据和第五版欧洲中尺度天气预报中心再分析(European Centre for Medium-Range Weather Forecast Re-Analysis V5, ERA5)数据重采样至1°×1°的全球规则格网空间;其次,根据匹配条件收集晴空海面上的匹配观测点,用海洋微波辐射传输模型分别模拟FY-3C MWRI和GMI各个通道大气顶亮温;然后,根据匹配的观测值和模拟值计算DD值和FY-3C MWRI的理论观测值;最后,确定交叉辐射定标系数,并完成对FY-3C MWRI数据的定标重处理。结果表明:相对于GMI,FY-3C MWRI观测值被低估,特别是低频通道,但随着频率的增大,定标误差逐渐变小。FY-3C MWRI升轨(MWRIA)的定标误差比降轨(MWRID)小1.0~2.0 K。在全球天基交叉辐射定标系统(Global Space-based Inter-Calibration System, GSICS)所定义的标准场景亮温下,对于10V/H、18V/H、23V、36V/H和89V/H共9个通道,MWRIA的辐射定标误差分别为-6.7±0.3 K、-8.7±0.7 K、-2.9±0.7 K、-2.0±0.8 K、-2.4±0.7 K、-4.0±0.8 K、-2.4±1.4 K、-1.3±1.0 K和-0.4±1.8 K;而MWRID的辐射定标误差分别为-7.9±0.7 K、-9.7±0.9 K、-4.3±0.9 K、-3.0±0.8 K、 -3.5±0.9 K、-5.1±0.8 K、-3.0±1.1 K、-2.4±0.6 K和-1.0±2.1 K。

关键词: 交叉辐射定标FY-3C MWRIGMI双差异法海洋微波辐射传输模型    
Abstract:

Accurate radiometric calibration is the fundamental of quantitative remote sensing. In this work, the Microwave Radiation Imager (MWRI) on the Chinese meteorological satellite Fengyun 3C (FY-3C) is intercalibrated against the Microwave Imager on the Global Precipitation Measurement (GMI) using the double difference method. First, the FY-3C MWRI data, GMI data and the fifth edition of the European Centre for Medium-Range Weather Forecast Re-Analysis (ERA5) data are resampled into a 1°×1° regular grid space. Then, matching observations are collected according to matching criteria, and simulations in both FY-3C MWRI and GMI channels at top-of-atmosphere are calculated using the ocean microwave radiative transfer model. Next, the double differences and theoretic observations in FY-3C MWRI channels are computed. Finally, the intercalibration coefficients are determined, and the FY-3C MWRI data are re-calibrated. The results show that, against GMI, the observations in FY-3C MWRI channels are underestimated, especially for the low frequency channels, and the calibration bias decreases with the frequency increment. The calibration biases of FY-3C MWRI ascending (MWRIA) data are 1.0 K~2.0 K lower than that of FY-3C MWRI descending (MWRID) data. At the standard scene brightness temperatures defined by the Global Space-based Inter-Calibration System (GSICS), in 10V/H, 18V/H, 23V, 36V/H and 89V/H channels, the calibration errors of MWRIA are -6.7±0.3 K,-8.7±0.7 K,-2.9±0.7 K,-2.0±0.8 K,-2.4±0.7 K,-4.0±0.8 K,-2.4±1.4 K,-1.3±1.0 K and -0.4±1.8 K, respectively; the calibration errors of MWRIA are 7.9±0.7 K,-9.7±0.9 K,-4.3±0.9 K, -3.0±0.8 K,-3.5±0.9 K,-5.1±0.8 K,-3.0±1.1 K,-2.4±0.6 K and -1.0±2.1 K, respectively.

Key words: Intercalibration    FY-3C MWRI    GMI    Double difference method    Ocean microwave radiative transfer model
收稿日期: 2020-01-10 出版日期: 2021-07-22
ZTFLH:  TP75  
基金资助: 国家重点研发计划项目“国产多系列遥感卫星历史资料再定标技术”(2018YFB0504900)
通讯作者: 蒋耿明     E-mail: zqzeng17@fudan.edu.cn;jianggm@fudan.edu.cn
作者简介: 曾子倩(1994-),女,湖北省荆州人,硕士研究生,主要从事微波遥感仪器定标研究。E?mail: zqzeng17@fudan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曾子倩
蒋耿明

引用本文:

曾子倩,蒋耿明. FY-3C MWRI在轨交叉辐射定标[J]. 遥感技术与应用, 2021, 36(3): 682-691.

Ziqian Zeng,Gengming Jiang. Intercalibration of the Microwave Radiation Imager on Fengyun 3C. Remote Sensing Technology and Application, 2021, 36(3): 682-691.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.3.0682        http://www.rsta.ac.cn/CN/Y2021/V36/I3/682

序号名称中心频率 /GHz带宽 /MHz极化 方式灵敏度 /K

地面分辨率

/km

1/210V/H10.65180V, H0.551×85
3/418V/H18.7200V, H0.530×50
5/623V/H23.8400V, H0.827×45
7/836V/H36.5900V, H0.518×30
9/1089V/H89.04 600V, H1.09×15
表1  FY-3C MWRI仪器参数
序号名称中心频率 /GHz带宽 /MHz

极化

方式

灵敏度 /K地面分辨率 /km
1/210V/H10.65100V,H0.9619×32
3/418V/H18.7200V,H0.8411×18
523V23.8400V1.059.2×15
6/736V/H36.641 000V,H0.658.6×14
8/989V/H89.06 000V,H0.574.4×7.2
10/11166V/H166.04 000V,H1.54.4×7.2
12183±7V183.31±72 000V1.54.4×7.2
13183±3V183.31±32 000V1.54.4×7.2
表2  GMI仪器参数
仪器名称AiB1,iB2,iRMSE/KR2
MWRIA10V88.73 ± 6.850.047 5 ± 0.085 90.002 760 ± 0.000 2690.440.988
10H23.64 ± 2.020.648 3 ± 0.048 80.002 070 ± 0.000 2950.570.977
18V60.54 ± 4.040.436 1 ± 0.043 60.001 360 ± 0.000 1170.630.993
18H5.40 ± 1.120.959 0 ± 0.019 10.000 091 ± 0.000 0810.850.993
23V13.44 ± 1.770.925 0 ± 0.016 90.000 101 ± 0.000 0400.730.998
36V163.48 ± 11.20-0.494 8 ± 0.107 70.003 490 ± 0.000 2590.810.980
36H9.88 ± 3.310.906 0 ± 0.045 20.000 289 ± 0.000 1541.340.980
89V-20.69 ± 4.921.185 7 ± 0.038 80.000 391 ± 0.000 0760.780.996
89H4.88 ± 2.120.962 1 ± 0.019 50.000 077 ± 0.000 0451.690.994
MWRID10V30.66 ± 13.720.788 5 ± 0.173 70.000 441 ± 0.000 5490.840.965
10H-10.62 ± 3.351.541 3 ± 0.083 7-0.003 540 ± 0.000 5220.800.958
18V4.45 ± 4.771.034 6 ± 0.051 9-0.000 196 ± 0.000 1410.730.992
18H-3.04 ± 1.001.109 3 ± 0.017 30.000 486 ± 0.000 0740.850.995
23V0.44 ± 1.661.048 4 ± 0.015 9-1.633 333 ± 0.000 0380.670.998
36V-33.97 ± 9.931.391 6 ± 0.095 9-0.000 981 ± 0.000 2310.690.987
36H-9.72 ± 2.781.173 6 ± 0.038 20.000 590 ± 0.000 1311.230.985
89V-2.89 ± 4.861.040 4 ± 0.038 5-0.000 078 ± 0.000 0760.690.997
89H6.33 ± 2.080.943 3 ± 0.019 40.000 149 ± 0.000 0451.660.995
表3  FY-3C MWRI 交叉辐射定标结果(2017年1月)
序号名称

标准场景

亮温/K

MWRIA

定标偏差/K

MWRID

定标偏差/K

110V163.5-6.7±0.3-7.9±0.7
210H86.5-8.7±0.7-9.7±0.9
318V181.5-2.9±0.7-4.3±0.9
418H110.2-2.0±0.8-3.0±0.8
523V202.9-2.4±0.7-3.5±0.9
636V206.1-4.0±0.8-5.1±0.8
736H139.9-2.4±1.4-3.0±1.1
889V247.2-1.3±1.0-2.4±0.6
989H201.5-0.4±1.8-1.0±2.1
表4  标准场景亮温下FY-3C MWRI辐射定标偏差
图1  FY-3C MWRI观测与GMI观测时空匹配图(GMI:蓝色;MWRI:红色;时间:2017年1月1日12:45)
图2  FY-3C MWRI在轨交叉辐射定标流程图
图3  FY-3C MWRI与GMI的匹配观测的空间分布(a) MWRIA与GMI的匹配观测点 (b) MWRID与GMI的匹配观测点
图4  FY-3C MWRI理论观测值和DD值随实际观测值变化的散点图及回归分析结果
1 Tang F, Zou X, Yang H, et al. Estimation and Correction of Geolocation Errors in FengYun-3C Microwave Radiation Imager Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 407-420.
2 Wu S, Chen J. Instrument Performance and Cross Calibration of FY-3C MWRI[C]∥ Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium, 10-15July2016: 388-391.
3 Berg W, Bilanow S, Chen R, et al. Intercalibration of the GPM Microwave Radiometer Constellation[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(12): 2639-2654.
4 Newell D, Draper D, Remund Q, et al. GPM Microwave Imager (GMI) On-orbit Performance and Calibration Results[C]∥ Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium, 26-31July2015: 5158-5161.
5 Draper D, Newell D. Global Precipitaion Measurement Microwave Imager (GMI) On-orbit Calibration[C]∥ Proceedings of 14th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad),11-14,April, 2016: 166-169.
6 Butler J, Barnes R A. Calibration Strategy for the Earth Observing System (EOS)-AM1 Platform[J]. IEEE Transations on Geoscience and Remote Sensing,1998,36(4):1056-1061.
7 Chander G, Hewison T J, Fox N, et al. Overview of Intercalibration of Satellite Instruments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1056-1080.
8 Doelling D R, Minnis P, Nguyen L. Calibration Comparisons between SEVIRI, MODIS and GOES Data[C]∥ Proceedings of Second MSG-RAO Workshop, 9-10September2004: 149-154.
9 Cao C, Weng F, Goldberg M, et al. Intersatellite Calibration of Polar-orbiting Radiometers Using the SNO/SCO Method[C]∥ Proceedings of 2005 IEEE International Geoscience and Remote Sensing Symposium,25-29,July,2005:109-112.
10 Jiang G M, Li Z L. Cross-calibration of MSG1-SEVIRI Infrared Channels with Terra-MODIS Channels[J]. International Journal of Remote Sensing,2009,30(30):753-769.
11 Jiang G M, Yan H, Ma L L. Intercalibration of SVISSR/FY-2C Infrared Channels Against MODIS/Terra and AIRS/Aqua Channels[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(5): 1548-1558.
12 Jiang G M. Intercalibration of Infrared Channels of Polar-orbiting IRAS/FY-3Awith AIRS/aqua Data[J]. Optics Express, 2010,18(4): 3558-3363.
13 Jiang G M, Wang Z Y, Wang J. Intercalibration of VIRR/FY-3A/B Split-window Channels with AIRS/Aqua and IASI/Metop-A Measurements[J]. International Journal of Remote Sensing,2016,37(22):5249-5269.
14 Jiang G M, Li S, Wang Z Y. Intercalibration of IRAS/FY-3B Infrared Channels with IASI/Metop-A 1C Data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 99(7): 2510-2517.
15 Li W X, Jiang G M, Li G, Li C. Intercalibration of Advanced Himawari Imager's Infrared Channels with IASI/Metop-B 1C Data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(6): 1989-1996.
16 Yang J X, McKague D S. Improving Collocation-based Scan-dependent Intercalibration over the Ocean for Spaceborne Radiometry[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13: 589-593.
17 Biswas S K, Santos Garcia A, Jones W L. Intercalibration of the Microwave Radiometer Brightness Temperature for the Global Precipitation Measurement Mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51: 1465-1477.
18 Sapiano M, Berg W, McKague D, Kummerow C. Towards an Intercalibrated Fundamental Climate Data Record of the SSM/I Sensors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51: 1492-1503.
19 Wentz F J, Meissner T. AMSR Ocean Algorithm, Version2[R]. Remote Sensing Systems, Santa Rosa, CA,121599A-1, 2000.
20 Leibe H J. An Updated Model for Millimeter Wave Propagation in Moist Air[J]. Radio Science, 1985,20(5):1069-1089.
21 Liebe H J. MPM - An Atmospheric Millimeter-wave Propagation Model[J]. International Journal of Infrared and Millimeter Waves, 1989, 10(6): 631-650.
22 Liebe H J, Hufford G A, Cotton M G. Propagation Modeling of Moist Air and Suspended Water/Ice Particles at Frequencies Below 1000 GHz[C]∥ Proceedings of AGARD Conference, 1993,542:3.1
22 -3.10.
23 Waters J R. Absorption and Emission by Atmospheric Gases[M]. Methods in Experimental Physics, vol. 12B, Edited by Meeks M L, chap. 2.3, Academic, Orlando,1976.
24 Rosenkranz P W. Water Vapor Microwave Continuum Absorption: A Comparison of Measurements and Models[J]. Radio Science, 1998, 33(4): 919-928.
25 Wu S T, Fung A K. A Non-coherent Model for Microwave Emission and Backscattering from the Sea Surface[J] Journal of Geophysical Research, 1972, 77: 5917-5929.
26 Wentz F J. A Two-scale Scattering Model for Foam-free Sea Microwave Brightness Temperatures[J]. Journal of Geophysical Research, 1975, 80(24): 3441-3446.
27 Yueh S H. Modeling of Wind Direction Signals in Polarimetric Sea Surface Brightness Temperatures[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(6): 1400-1418.
28 Germain K S, Poe G, Gaiser P. Modeling of Polarimetric Iicrowave Signal Due to Ocean Surface Wind Vector[C]∥ Proceedings of 1998 IEEE International Geoscience and Remote Sensing Symposium, 6-10
28 July,1998: 2304-2306.
29 Johnson J. An Efficient Two-scale Model for the Computation of Thermal Emission and Atmospheric Reflection from the Sea Surface[J] IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(3): 560-568.
30 Meissner T, Wentz F. The Emissivity of the Ocean Surface between 6~90 GHz over a Large Range of Wind Speeds and Earth Incidence Angles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(8): 3004-3026.
[1] 赵洪臣,周兴华,刘永学,纪雪,杨磊,孙超,金松. GPM卫星微波辐射计SST产品观测覆盖度与不确定性分析研究[J]. 遥感技术与应用, 2017, 32(6): 1031-1039.
[2] 蒋耿明,金亚秋. 中国风云二号SVISSR传感器热红外波段与AIRS/Aqua的交叉辐射定标[J]. 遥感技术与应用, 2012, 27(4): 504-510.