Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (3): 692-704    DOI: 10.11873/j.issn.1004-0323.2021.3.0692
遥感应用     
地表粗糙度的测量计算方法及其对微波辐射散射的影响分析
孟春红1(),郭鹏1(),赵天杰2,杨纲1,李西灿1,王博1,万红1,2
1.山东农业大学 信息科学与工程学院,山东 泰安 271018
2.中国科学院空天信息创新研究院,北京 100101
Measurement and Calculation Method of Surface Roughness and Its Impact on Microwave Radiation Scattering
Chunhong Meng1(),Peng Guo1(),Tianjie Zhao2,Gang Yang1,Xican Li1,Bo Wang1,Hong Wan1,2
1.College of Information Science and Engineering,Shandong Agricultural University,Tai'an 271018,China
2.Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100101,China
 全文: PDF(8677 KB)   HTML
摘要:

地表粗糙度反映了地表的微小起伏,是土壤水分微波遥感反演研究中重要的地表参数。以闪电河流域为研究区,首先利用针板法对不同地物下的地表粗糙度进行测量,然后对测量数据进行透视变换、数字化、倾斜校正及周期校正等一系列的处理,计算得到不同地表的粗糙度结果。研究表明:在使用针板法测量地表粗糙度时,为校正不同剖面测量姿态的影响需要进行倾斜校正以减小计算偏差,而对胡萝卜地、花菜地等具有周期性田垄结构的地表还需要进一步进行周期校正。通过对获取的闪电河流域典型地物的地表粗糙度进行分析,发现该地区草地的地表粗糙度较小,作物区的地表粗糙度普遍偏大,各类地物的地表粗糙度由小到大分别为草地、花菜地、玉米地、胡萝卜地、土豆(收割)地和土豆(未收)地。最后对地表粗糙度与机载微波辐射、散射观测进行相关性分析,发现在地面单点测量的地表粗糙度与机载尺度的微波辐射散射特性之间不存在明显关系。

关键词: 遥感地表粗糙度均方根高度自相关长度校正    
Abstract:

The surface roughness reflects the small fluctuations of the surface and is an important surface parameter in the microwave remote sensing inversion of soil moisture. In this paper, the Lightning River Basin is used as the research area. First, the surface roughness of different ground objects is measured using the pin-plate method, and then a series of processing such as perspective transformation, digitization, tilt correction and period correction are performed on the measured data. Surface roughness results. Studies have shown that when measuring the surface roughness using the pin plate method, in order to correct the influence of the measurement attitude of different sections, tilt correction is required to reduce the calculation bias, and the ground surface with periodic ridge and ridge structure such as carrot field and cauliflower field needs further Perform period correction. By analyzing the surface roughness of typical objects in the Lightning River Basin, it is found that the surface roughness of the grassland in this area is small, the surface roughness of the crop area is generally large, and the surface roughness of various types of objects is from small to large They are grassland, cauliflower field, corn field, carrot field, potato (harvest) field, and potato (unreceived) field. Finally, the correlation analysis between the surface roughness and the airborne microwave radiation and scattering observations was conducted, and it was found that there was no obvious relationship between the surface roughness measured at the ground single point and the airborne scale microwave radiation scattering characteristics.

Key words: Remote sensing    Surface roughness    Root Mean Square Height(RMSH)    Correlation Length(CL)    Correction
收稿日期: 2020-01-17 出版日期: 2021-07-22
ZTFLH:  P237  
基金资助: 国家重大科学研究计划项目“全球陆表能量与水分交换过程及其对全球变化作用的卫星观测与模拟研究”(2015CB953700);民用航天“十三五”技术预先研究项目“陆地水资源卫星系统技术”,中国科学院青年创新促进会项目(2016061)
通讯作者: 郭鹏     E-mail: 2018110577@sdau.edu.cn;guopeng@sdau.edu.cn
作者简介: 孟春红(1996-),女,山东济南人,硕士研究生,主要从事微波遥感地表参数定量反演及应用研究。E?mail: 2018110577@sdau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孟春红
郭鹏
赵天杰
杨纲
李西灿
王博
万红

引用本文:

孟春红,郭鹏,赵天杰,杨纲,李西灿,王博,万红. 地表粗糙度的测量计算方法及其对微波辐射散射的影响分析[J]. 遥感技术与应用, 2021, 36(3): 692-704.

Chunhong Meng,Peng Guo,Tianjie Zhao,Gang Yang,Xican Li,Bo Wang,Hong Wan. Measurement and Calculation Method of Surface Roughness and Its Impact on Microwave Radiation Scattering. Remote Sensing Technology and Application, 2021, 36(3): 692-704.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.3.0692        http://www.rsta.ac.cn/CN/Y2021/V36/I3/692

图1  研究区采样点分布图
图2  地表粗糙度野外测量与粗糙度计算流程图
图3  针板法测量示意图
图4  样方2号子样方1图像透视变换图
图5  测量数据数字化高度图
图6  样方2子样方1(草地)倾斜校正前后对比图
图7  样方11子样方1(胡萝卜)倾斜校正前后对比图
图8  样方21子样方2(胡萝卜)倾斜校正前后对比图
图9  样方2子样方1(草地)周期校正前后对比图
图10  样方11子样方1(胡萝卜)周期校正前后对比图
图11  样方21子样方2(胡萝卜)周期校正前后对比图
图12  各类地物不同方向的地表均方根高度均值与方差统计图
图13  各类地物不同方向的地表相关长度均值与方差统计图

地 物

类 别

均方根高度(RMSH)/cm自相关长度(Correlation Length)/cm
平行垄/东西向垂直垄/南北向平行垄/东西向垂直垄/南北向
校正前校正后校正前校正后校正前校正后校正前校正后
草地0.9250.8180.8990.70423.19119.06026.57816.065
胡萝卜地1.6001.4043.8761.24117.74011.00622.2254.405
花菜地1.0670.7553.5891.12031.0989.33023.4026.628
玉米地1.6601.6452.7491.02925.30025.12023.8604.220
土豆(未收)地1.4091.3409.0671.84616.25313.85017.3704.533
土豆(收割)地1.2431.2432.8951.56815.30013.12034.5208.450
表1  不同方向地表粗糙度参数均值统计表
图14  各类地物下地表平均均方根高度均值统计图
图15  各类地物下地表平均相关长度方差统计图

地物

类别

均方根高度(RMSH)/cm自相关长度(Correlation Length)/cm
校正前校正后校正前校正后
草地0.8960.75424.88415.570
胡萝卜地2.7381.42619.9807.710
花菜地2.3280.93827.2507.980
玉米地2.2051.33724.58014.670
土豆(未收)地5.2381.59316.8109.190
土豆(收割)地1.8881.51224.91010.790
表2  地表粗糙度参数统计表
图16  草地粗糙度与微波散射辐射相关分析图
图17  地表粗糙度与微波散射辐射相关分析图
1 Jiang Chongya, Fang Hongliang, Wei Shanshan. A Summary of Research on Parameterization of Surface Roughness[J]. Progress in Earth Science, 2012,27(3): 292-303.
1 江冲亚, 方红亮, 魏珊珊. 地表粗糙度参数化研究综述[J]. 地球科学进展, 2012, 27(3):292-303.
2 Zhu Caiying, Zhang Renhua, Wang Jinfeng, et al. Quantitative Retrieval of Two-dimensional Distribution of Surface Aerodynamic Roughness Using SAR Images and TM Thermal Infrared Images[J]. Science in China: Earth Sciences, 2004, 34(4):385-393.
2 朱彩英, 张仁华, 王劲峰, 等. 运用SAR图像和TM热红外图像定量反演地表空气动力学粗糙度的二维分布[J]. 中国科学:地球科学, 2004, 34(4):385-393.
3 Chen Luwan, Han Ling, Qin Xiaobao, et al. A New Method for Constructing Roughness Parameters in Soil Moisture from Microwave Remote Sensing[J]. Geography and Geographic Information Science, 2017,33(6):37-43,2.
3 陈鲁皖, 韩玲, 秦小宝, 等. 微波遥感反演土壤水分中构建粗糙度参数的新方法[J]. 地理与地理信息科学,2017,33(6):37-43,2.
4 Chen Si. Research on Inversion of Soil Surface Roughness based on Optical and SAR Data[D]. Beijing: University of Chinese Academy of Sciences, 2019.
4 陈思. 基于光学和SAR数据的土壤表面粗糙度反演研究[D].北京:中国科学院大学(中国科学院东北地理与农业生态研究所),2019.
5 Davidson M W J, Toan T L, Mattia F, et al. On the Characterization of Agricultural Soil Roughness for Radar Remote Sensing Studies[J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(2):630-640. doi:10.1109/36.841993.
doi: 10.1109/36.841993
6 Zhao Tianjie, Zhang Lixin, Jiang Lingmei, et al. Joint Inversion of Soil Moisture Using Active and Passive Microwave Data[J]. Advances in Earth Science, 2009,24(7): 769-775.
6 赵天杰, 张立新, 蒋玲梅, 等. 利用主被动微波数据联合反演土壤水分[J]. 地球科学进展, 2009,24(7): 769-775.
7 Ulaby F T, Batlivala P P, Dobson M C. Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare Soil[J]. IEEE Transactions on Geoscience Electronics, 1978, 16(4): 286-295.doi:10.1109/TGE.1978.294586.
doi: 10.1109/TGE.1978.294586
8 Fung A K, Li Z, Chen K S. Backscattering from a Randomly Rough Dielectric Surface[J]. IEEE Transactions on Geoscience and Remote Sensing,1992,30(2):356-369.doi:10.1109/36.134085.
doi: 10.1109/36.134085
9 Chen K S, Wu T D, Tsang L, et al. Emission of Rough Surfaces Calculated by the Integral Equation Method with Comparison to Three-dimensional Moment Method Simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1):90-101. doi:10.1109/TGRS.2002.807587.
doi: 10.1109/TGRS.2002.807587
10 Zhao Tianjie. New Developments and Future Prospects of Passive Microwave Inversion of Soil Moisture in L-band[J]. Progress in Geography, 2018,37(2): 198-213.
10 赵天杰. 被动微波反演土壤水分的L波段新发展及未来展望[J]. 地理科学进展, 2018, 37 (2): 198-213.
11 Zhao Tianjie. Passive Microwave Remote Sensing of Soil Moisture[D]. Beijing:Beijing Normal University, 2012.
11 赵天杰. 被动微波遥感土壤水分[D].北京:北京师范大学,2012.
12 Zhao T J, Shi J C, Bindlish R, et al. Parametric Exponentially Correlated Surface Emission Model for L-band Passive Microwave Soil Moisture Retrieval[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2015,83:65-74.doi:10.1016/j.pce.2015.04.001.
doi: 10.1016/j.pce.2015.04.001
13 Lawrence H, Wigneron J P, Demontoux F, et al. Evaluating the Semiempirical H-Q Model Used to Calculate the L-band Emissivity of a Rough Bare Soil[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 4075-4084.doi:10.1109/TGRS.2012.22269 95.
doi: 10.1109/TGRS.2012.22269 95
14 Zribi M, Dechambre M. A New Empirical Model to Retrieve soil Moisture and Roughness from C-band Radar Data[J]. Remote Sensing of Environment,2002,84(1):42-52. doi:10.1016/S0034-4257(02)00069-X.
doi: 10.1016/S0034-4257(02)00069-X
15 Chen Jing, Jia Yi, Yu Fan. Retrieval of Bare Surface Soil Moisture with Dual Polarization Radar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(10):109-116.
15 陈晶, 贾毅, 余凡. 双极化雷达反演裸露地表土壤水分[J]. 农业工程学报, 2013,29(10): 109-116.
16 Tao Haoran, Chen Quan, Li Zhen, et al. Close-range Photogrammetry Improves the Accuracy of Bare Surface Roughness Measurement[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(15):162-167.
16 陶浩然,陈权,李震,等.近景摄影测量提高裸露地表粗糙度测量精度[J]. 农业工程学报,2017,33(15): 162-167.
17 Zhao Tianjie, Shi Jiancheng, Liqing Lü, et al. Comprehensive Remote Sensing Experiment of Water Cycle and Energy Balance in the Shandian River Basin[J]. National Remote Sensing Bulletin, 2020,25(4):1-17.
17 赵天杰, 施建成, 吕利清, 等. 闪电河流域水循环和能量平衡遥感综合试验[J]. 遥感学报, 2020, 25(4):1-17.
18 Thomas J, Kareem A, Bowyer K. Fast Robust Perspective Transform Estimation for Automatic Image Registration in Disaster Response Applications[C]∥ Geoscience and Remote Sensing Symposium, 2012.
19 Su Z, Zhu S, Lü X, et al. Image Restoration Using Structured Sparse Representation with a Novel Parametric Data-Adaptive Transformation Matrix[J]. Image Communication, 2017, 52(3):151-172.doi:10.10 16/j.image.2017.01.003.
doi: 10.10 16/j.image.2017.01.003
20 Xu Yanping. Research on Visualization Method of A-pillar Blind Zone based on 3D Reconstruction and Perspective Transformation[D].Changchun:Jilin University, 2019.许彦平. 基于三维重构与透视变换的汽车A柱盲区可视化方法研究[D].长春:吉林大学,2019.
21 Wu Di, Huang Wenqian, Wang Ying. Derivation of Perspective Projection Transformation Matrix in Graphic Transformation[J]. Hydrographic Surveying and Charting, 2003,23(1):18-21.
21 吴迪,黄文骞,王莹.图形变换中透视投影变换矩阵的推导[J].海洋测绘, 2003,23(1): 18-21.
22 Evans D L, Farr T G, Zyl J J V. Estimates of Surface Roughness Derived from Synthetic Aperture Radar(SAR) Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2):382-389.doi:10.1109/36.134087.
doi: 10.1109/36.134087
23 Lü J R, Xie Y S, Luo H. Erosion Process and Temporal Variations in the Soil Surface Roughness of Spoil Heaps under Multi-Day Rainfall Simulation[J]. Remote Sensing,2020,12(14):2192. doi:10.3390/rs12142192.
doi: 10.3390/rs12142192
24 Jin A K, Lin S L, Chuang S L. Microwave Thermal Emission from Periodic Surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, GE-22(4): 377- 382.doi:10.1109/TGRS.1984.350640.
doi: 10.1109/TGRS.1984.350640
25 Zheng Xingming, Zhao Kai, Li Xiaojie. Measurement and Accuracy Analysis of Surface Roughness Parameters in Farmland[J]. Journal of Geo-Information Science, 2013,15(5): 752-760.
25 郑兴明, 赵凯, 李晓洁. 农田表面粗糙度参数的测量与精度分析[J]. 地球信息科学学报,2013,15(5):752-760.
26 Schwank M, Volksch I, Wigneron J P, et al. Comparison of Two Bare-soil Reflectivity Models and Validation with L-band Radiometer Measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010,48(1):325- 337.doi:10.1109/TGRS.2009.2026894.
doi: 10.1109/TGRS.2009.2026894
[1] 罗婕纯一,秦龙君,毛鹏,熊育久,赵文利,高辉辉,邱国玉. 水质遥感监测的关键要素叶绿素a的反演算法研究进展[J]. 遥感技术与应用, 2021, 36(3): 473-488.
[2] 刘鹤,顾玲嘉,任瑞治. 基于无人机遥感技术的森林参数获取研究进展[J]. 遥感技术与应用, 2021, 36(3): 489-501.
[3] 黄艳,郑玮. 基于无线传感器网络的森林生态系统观测试验平台构建[J]. 遥感技术与应用, 2021, 36(3): 502-510.
[4] 廖鸿燕,周小成,黄洪宇. 基于无人机遥感技术的台风灾害倒伏绿化树木检测[J]. 遥感技术与应用, 2021, 36(3): 533-543.
[5] 王淑静,赖佩玉,郝斌飞,马明国,韩旭军. 西南地区2001~2019年森林损失特征遥感监测与时空分析[J]. 遥感技术与应用, 2021, 36(3): 552-563.
[6] 胥鑫,朱迪. 星载差分吸收气压雷达的系统仿真与性能分析[J]. 遥感技术与应用, 2021, 36(3): 594-604.
[7] 冯哲颖,岳林蔚,沈焕锋. 基于多源水文数据融合的GRACE水储量精度校正[J]. 遥感技术与应用, 2021, 36(3): 605-617.
[8] 高子为,孙伟伟,程朋根,杨刚,孟祥超. 融合高分辨率遥感影像和POI数据的多特征潜在语义信息用于识别城市功能区[J]. 遥感技术与应用, 2021, 36(3): 618-626.
[9] 李昕娟,林家元,胡桂胜,赵伟. 西南山地典型流域地震前后泥石流物源遥感精细识别[J]. 遥感技术与应用, 2021, 36(3): 638-648.
[10] 尹翠景,封凯,王奇,刘磊. 遥感城市热岛提取的影响因素分析[J]. 遥感技术与应用, 2021, 36(3): 673-681.
[11] 陈敏,潘佳威,李江杰,徐璐,刘加敏,韩健,陈奕云. 结合VGGNet与Mask R-CNN的高分辨率遥感影像建设用地检测[J]. 遥感技术与应用, 2021, 36(2): 256-264.
[12] 陈妮,应丰,王静,李健. 基于U-Net的高分辨率遥感图像土地利用信息提取[J]. 遥感技术与应用, 2021, 36(2): 285-292.
[13] 林娜,冯丽蓉,张小青. 基于优化Faster-RCNN的遥感影像飞机检测[J]. 遥感技术与应用, 2021, 36(2): 275-284.
[14] 李庆,陈俊杰,李庆亭,李柏鹏,卢凯旋,昝露洋,陈正超. 基于SSD模型的京津冀地区尾矿库检测[J]. 遥感技术与应用, 2021, 36(2): 293-303.
[15] 祝一诺,高婷,王术东,周磊,杜明义. 基于迁移学习再训练模型和高分遥感数据的建筑垃圾自动识别方法[J]. 遥感技术与应用, 2021, 36(2): 314-323.