Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (4): 873-886    DOI: 10.11873/j.issn.1004-0323.2021.4.0873
遥感应用     
FY-4A LMI观测的利奇马(2019)台前飑线闪电活动及其与对流演变的关系
林小红1,2(),张文娟3(),范能柱2,黄铃光2,蒋滔2,付超2
1.福建省灾害天气重点实验室,福建 福州 350007
2.福建省气象台,福建 福州 350007
3.中国气象科学研究院灾害天气国家重点实验室,北京 100081
Lightning Activity in the Pre-TC Squall Line of Typhoon Lekima(2019) Observed by FY-4A LMI and Its Relationship with Convective Evolution
Xiaohong Lin1,2(),Wenjuan Zhang3(),Nengzhu Fan2,Lingguang Huang2,Tao Jiang2,Chao Fu2
1.Fujian Provincial Key Laboratory of Disaster Weather,Fuzhou 350007,China
2.Fujian Provincial Meteorological Station,Fuzhou 350007,China
3.State Key Laboratory of Disaster Weather,Chinese Academy of Meteorological Sciences,Beijing 100081,China
 全文: PDF(10953 KB)   HTML
摘要:

为研究风云四号A星闪电成像仪(FY-4A LMI)闪电资料在强对流天气的监测预警能力,以2019年台风“利奇马”台前飑线为例,利用FY-4A LMI闪电资料、FY-4A 云顶亮温资料(TBB)、地基闪电定位资料(ADTD)、组网雷达组合反射率因子资料和东南沿海自动站风雨资料,研究“利奇马”台前飑线全闪电活动的时空分布特征及其与飑线内对流演变的关系。结果表明:FY-4A LMI闪电频次的时空变化与台前飑线的演变过程相一致,LMI闪电爆发对台前飑线强度增强具有提早约1h的指示作用。在闪电活动与台前飑线对流的演变关系上,LMI闪电与卫星TBB深对流及雷达强回波的时空演变存在较好的相关性。LMI观测的闪电频数与强回波(35~55 dBZ)顶高具有对应关系,与-72 ℃冷云区面积及35 dBZ以上雷达组合反射率因子面积的变化特征相同。闪电活动集中位于TBB低值区的左侧和前部的亮温梯度大值区,对地面雷暴大风和强降水的可能发生位置具有判识作用。LMI与ADTD的比较发现二者所揭示的利奇马台前飑线闪电活动特征基本一致。

关键词: 闪电台前飑线闪电成像仪风云四号利奇马    
Abstract:

In order to study the monitoring and warning ability of Fengyun-4A Lightning Mapping Imager (LMI) lightning data in severe convective weather, the Pre-TC squall line of Typhoon Lekima (2019) is taken as a case study. Based on lightning data from FY-4A LMI, combining with FY-4A Temperature of Black Body (TBB) cloud top data,the cloud-to-ground lightning location data (ADTD), radar composed reflectivity factor data from National Radar Network, and wind and rain data from the automatic stations in southeast coast, the spatial and temporal distribution characteristics of the total lightning activity in the Pre-TC squall line and its relationship with the convective evolution are studied. The results show that the temporal and spatial changes of FY-4A LMI lightning rates are consistent with the evolution of the Pre-TC squall line. LMI lightning burst has an indicating function of about 1h in advance on the intensification of the Pre-TC squall line. In the relationship between lightning activity and convective evolution, the temporal and spatial characteristics of total lightning observed by LMI have good correlations with the evolution of satellite TBB and radar echoes. The time series of lightning rates has a corresponding relationship with the strong echo top height from 30 dBZ to 55 dBZ, which is consistent with the area changes of the cold cloud (≤-72 ℃ ) and the strong radar composed reflectivity factor (≥35 dBZ). Lightning activity is mostly located in the areas of large TBB gradient to the left and front side of the TBB low value area,which has an indication on the possible locations of thunderstorm gale and heavy precipitation. The comparisons between LMI and ADTD showed that the characteristics of lightning activity observed by the two systems in the Pre-TC squall line of Lekima are basically consistent.

Key words: Lightning    Pre-TC Squall Line    Lightning Mapping Imager (LMI)    Fengyun-4    Lekima
收稿日期: 2020-06-15 出版日期: 2021-09-26
ZTFLH:  TP79  
基金资助: 中国气象局预报员专项(CMAYBY2020-062);福建省气象局开放式基金项目(海峡所)(2019KH01)
通讯作者: 张文娟     E-mail: pop_lxh@163.com;zwj@cma.gov.cn
作者简介: 林小红(1975—),女,福建福州人,正高级工程师,主要从事预报技术研究。E?mail: pop_lxh@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
林小红
张文娟
范能柱
黄铃光
蒋滔
付超

引用本文:

林小红,张文娟,范能柱,黄铃光,蒋滔,付超. FY-4A LMI观测的利奇马(2019)台前飑线闪电活动及其与对流演变的关系[J]. 遥感技术与应用, 2021, 36(4): 873-886.

Xiaohong Lin,Wenjuan Zhang,Nengzhu Fan,Lingguang Huang,Tao Jiang,Chao Fu. Lightning Activity in the Pre-TC Squall Line of Typhoon Lekima(2019) Observed by FY-4A LMI and Its Relationship with Convective Evolution. Remote Sensing Technology and Application, 2021, 36(4): 873-886.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.4.0873        http://www.rsta.ac.cn/CN/Y2021/V36/I4/873

图1  2019年8月8日14:00~23:00“利奇马”台前飑线逐时演变
图2  2019年8月8日14:00~23:00台前飑线3个阶段雷暴大风和短时强降水的站点分布(圆点符号表示雷暴大风,三角形符号表示短时强降水)
图3  LMI全闪和ADTD地闪的闪电频次、雷暴大风与短时强降水站数的逐时演变
图4  LMI全闪和ADTD地闪的闪电频次、云团深对流面积和强雷达回波面积的时序演变(时间分辨率为10 min)
图5  台前飑线三个阶段地面雷暴大风和短时强降水站点、LMI全闪和ADTD地闪的空间分布叠加深对流移动轨迹过程(时间步长为30 min)(地面风雨站为蓝色三角形,LMI event为绿色圆点,LMI group为蓝色圆点,ADTD地闪为紫色圆点,深对流移动轨迹为红色实线)
图6  强回波顶高、LMI全闪和ADTD地闪的闪电频数逐6 min演变
图7  台前飑线过程 LMI event、LMI group和ADTD地闪的闪电频数与雷达组合反射率因子统计
图8  台前飑线形成发展阶段FY-4A TBB、雷达组合反射率因子与观测时刻±10 min的LMI events、LMI groups 及ADTD地闪分布(为LMI events,为LMI groups,为ADTD地闪)
图 9  同图8,但为台前飑线加强成熟阶段
图10  同图8,但为台前飑线减弱消亡阶段
1 Williams E R.The global electrical circuit:a review[J].Atmospheric Research, 2009, 91(2-4):140-152.
2 Qie X S, Yan M H, Guo C M, et al. Lightning cata and study of tunderstorm nowcasting[J]. Acta Meteor Sin, 1993, 7(2): 244-256.
3 Fierro A O, Mansell E R, Zigler C, et al. Application of a lightning data assimilation technique in the WRF-ARW model at cloud-resolving scales for the Tornado outbreak of 24 May 2011[J]. Monthly Weather Review, 2012, 8: 2609-2627.
4 Zhang Yijun, Meng Qing, Krehbiel P R, et al. Temporal and spatial distribution characteristics of lightning VHF radiation source in supercell thunderstorm[J]. Science Bulletin, 2004, 49(5): 499-505.
4 张义军,孟青, Krehbiel P R,等.超级单体雷暴中闪电VHF辐射源的时空分布特征[J].科学通报, 2004, 49(5): 499-505.
5 Feng G L, Qie X S, Wang J, et al. Lightning and doppler Radar observations of a squall line system[J]. Atmos, Res. 2009, 91(2-4): 466-478.
6 Cummins K L, Murphy M J, Bardo E A, et al. A combined TOA/MDF technology upgrade of the U S national lightning detection network[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D8): 9035-9044.
7 Abarca S F,Corbosiero K L, Galarneau T J. An evaluation of the Worldwide Lightning Location Network(WWLLN) using the National Lightning Detection Network(NLDN) as ground truth[J]. Journal of Geophysical Research:Atmospheres,2010,115:D18206. DOI:10.1029/2009JD013411.
doi: 10.1029/2009JD013411
8 Christian H J, Blakeslee R J, Goodman S J. The detection of lightning from geostationary orbit[J]. Journal of Geophysical Research: Atmospheres, 1989, 94 (D11): 13329-13337.
9 Boccippio D J, Koshak W, Blakeslee R, et al. The Optical Transient Detector (OTD): instrument characteristics and cross-sensor validation[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(4): 441-458.
10 Zhi Shulin, Bao Huimeng, Li Jie. Application ability analyses of FY-4A satellite flashes data in Typhoon squall line weather surveillance[J].Journal of Yunnan University:Natural Sciences Edition,2019,41(6):1178-1190.
10 支树林,包慧濛,李婕. FY-4A卫星闪电资料在台风飑线天气监测中的应用能力分析[J].云南大学学报(自然科学版),2019,41(6):1178-1190.
11 Zheng Yuanyuan,Fu Yunfei, Liu Yong, et al. Heavy rainfall structures and lightning activitles in a cold-front cyclonehappend in Huai river deriver from TRMM PR and LIS obsvervations[J].Acta Meteorologica Sinica,2004,62(6):790-802.
11 郑媛媛,傅云飞,刘永,等.热带测雨卫星对淮河一次暴雨降水结构与闪电活动的研究[J].气象学报, 2004, 62(6):790-802.
12 Yuan Tie,Xiushu Qie.TRMM-based study of lightning activity and its relationship with precipitation structure of a squall line in South China[J].Chinese Journal of Atmospheric Sciences,2010,34(1):58-70.
12 袁铁,郄秀书.基于TRMM卫星对一次华南飑线的闪电活动及其与降水结构的关系研究[J].大气科学,2010, 34(1):58-70.
13 Liu C L, Heckman S. The application of total lightning detection and cell tracking for severe weather prediction[C]∥ Proceedings of the WMO Technical Conference on Instruments and Methods of Observation, 2010.
14 Yang Meirong, Cheng Lidan, Li Peng, et al. Analysis of lighning activity in a severe squall line process in Henan using TRMM satellite data[J]. Meteorological and Environmental Sciences,2012,35(1):74-77.
14 杨美荣,程丽丹,李鹏,等.利用TRMM卫星资料对河南一次飑线过程的闪电活动分析[J].气象与环境科学, 2012, 35(1): 74-77.
15 Cecil D. J, Buechler D E, Blakeslee R J. Gridded lightning climatology from TRMM-LIS and OTD: dataset description[J]. Atmospheric Research, 2014, 135-136: 404-414.
16 Albrecht R, Goodman S, Buechler D, et al. Where are the lightning hotspots on earth?[J]. Bulletin of the American Meteorological Society, 2016, 97(11): 2051-2068.
17 Thompson K B, Bateman M G, Carey L D. A Comparison of two ground-based lightning detection Nnainst the satellite-based Lightning Imaging Sensor (LIS) [J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(10): 2191-2205.
18 Sloop C, Liu C, Heckman S. Analysis of earth networks total lightning detection efficiency versus LIS for 2011 through 2013 in North Amercia[C]∥ Proceedings of the 18th conference on intergrated observing and assimilation systems for the atmosphere, oceans, and land surface, American meteorological society,2014.
19 Hui Wen, Huang Fuxiang,Guo Qiang. Combined application of lightning detection data from satellite and ground-based observation[J].Optics and Precision Engineering,2018,26(1):218-229.
19 惠雯,黄富祥,郭强.卫星与地基闪电探测资料在闪电活动研究中的综合应用[J].光学精密工程, 2018, 26(1): 218-229.
20 Yang J, Zhang Z, Wei C, et al. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4[J]. Bulletin of the American Meteorological Society, 2017, 98(8): 1637-1658.
21 Zhang Zhiqing,Lu Feng, Fang Xiang,et al.Application and development of FY-4 meteorological satellite[J].Aerospace Shanghai, 2017,34(4):8-12.
21 张志清,陆风,方翔,等. FY-4卫星应用和发展[J].上海航天,2017,34(4): 8-12.
22 Cao Dongjie, Lu Feng, Zhang Xiaohu, et al. Application of FY-4 satellite lightning detection products in monitoring of strong convective weather[J]. Satellite Applications, 2018, 11: 18-23.
22 曹冬杰, 陆风, 张晓虎, 等. 风云四号卫星闪电探测产品在强对流天气监测中的应用[J].卫星应用, 2018, 11: 18-23.
23 Hui W, Huang F, Liu R. Characteristics of lightning signals over the Tibetan Plateau the capability of FY-4A LMI lightning detecton in the plateau[J]. International Journal of Remote Sensing, 2020, 41(12): 4603-4623. DOI:10.1080/01431161.2020.1723176.
doi: 10.1080/01431161.2020.1723176
24 Wen Hui,Wenjuan Zhang, Lyu Weitao , et al. Preliminary observations from the China Fengyun-4A lightning mapping imager and its optical radiation characteristics[J].Remote Sens, 2020, 12(16): 2622. DOI:10.3390/rs12162622.
doi: 10.3390/rs12162622
25 Zhang Xiaoyun, Wei Ming, Pan Jiawen. Application of FY-4 lightning data in monitoring and warning a heavy precipitation in Xiamen on May 7,2018[J].Remote Sensing Technology and Application,2019,34(5):1082-1090.
25 张晓芸,魏鸣,潘佳文. FY-4闪电资料在厦门强降水监测预警中的应用[J].遥感技术与应用,2019, 34(5): 1082-1090.
26 Zhang W, Hui W, Lyu W, et al. FY-4A LMI observed lightning activity in super Typhoon Mangkhut (2018) in comparison with WWLLN data[J]. Journal of Meteorological Research, 2020, 34(1): 1-17.
27 Wei Lingxiang, Qiu Xuexing, Tong Jin, et al. Characteristics of lightning activities during Typhoon “Lekima”(1909)[J]. Journal of the Meteorological Sciences,2020,40(1):123-129.
27 魏凌翔,邱学兴,童金,等.超强台风“利奇马”(1909)的闪电活动特征[J].气象科学, 2020,40(1): 123-129.
28 Liu R, Liu J, Pessi A, et al. Preliminary study on the influence of FY-4 lightning data assimilation on precipition predictions[J].Journal of Tropical Meteorology, 2019,25(4): 528-541.
29 Chen Y D, Yu Z, Han W, et al. Case study of a retrieval method of 3D proxy reflectivity from FY-4A lightning data and its impact on the assimilation and forecasting for severe rainfall storms[J]. Remote Sens,2020,12(7):1165. DOI:10.3390/rs12071165.
doi: 10.3390/rs12071165
30 Huang Shouyou, Xu Guoqiang. Influence of LMIE lightning data of TY4A on cloud information initialization and numerical experiment[J].Plateau Meteorology,2020, 39(2): 378-392.
30 黄守友, 徐国强. FY4A的LMI闪电数据对云信息初始化的影响及数值试验[J].高原气象, 2020, 39(2): 378-392.
31 Xu G Q,Huang S Y,Zhao C Y. Influence of FY-4A lightning data on numerical forecast of convective weather[J].Meteor Mon,2020,46(9):1165-1177.
31 徐国强,黄守友,赵晨阳. FY-4A闪电资料在对流天气数值预报中的影响研究[J].气象, 2020, 46(9):1165-1177.
32 Wang Juan, Chen Yun. Analysis of the2009~2012 lightning distribution characteristics in China[J]. Meteorological monthly, 2015, 41(2): 160-170.
32 王娟,谌芸. 2009~2012年中国闪电分布特征分析[J].气象, 2015, 41(2): 160-170.
33 Zhu Jie. Comparison of the satellite-based Lightning Iimaging Sensor(LIS) against the ground-based national lightning monitoring network[J].Progress in Geophysics(in Chinese),2018, 33(2):541-546.
33 朱杰.星地闪电探测系统在中国区域探测数据对比分析[J].地球物理学进展,2018,33(2): 541-546.
34 Yin Liyun, Liu Lei, Zhang Tengfei, et al. Feature analysis of cloud-to-ground lightning variation for a mesoscale convective system in South-West of Yunnan[J]. Journal of Yunnan University: Natural Sciences Edition,2013, 35(4):495-506.
34 尹丽云,刘磊, 张腾飞,等.云南西南部一次中尺度对流系统的地闪演变特征[J].云南大学学报:自然科学版, 2013, 35(4): 495-506.
35 Chen Xiaohua, Zhang Tengfei, Yin Liyun, et al. The feature analysis of lighting process at low latitude plateau using cloud classification products[J]. Journal of Yunnan University: Natural Sciences Edition, 2014, 36(2): 205-213.
35 陈小华,张腾飞,尹丽云,等.卫星云分类产品在低纬高原强雷暴过程中的闪电特征分析[J].云南大学学报:自然科学版, 2014, 36(2): 205-213.
36 Price C,Rind D. Possible Implications of global climate change on global lightning distributions and frequencies[J].Journal of Geophysical Research Atmospheres,1994,99(D5):10823-10831.
37 Yao Yao,Ruan Ling,Zhou Shiping,et al. Comparison of lightning location system observation with satellite lightning observation in Three Gorges area within Western Hubei[J].High Voltage Engineering,2011,37(12):2990-2996.
37 姚尧,阮羚,周世平,等.鄂西三峡地区雷电定位系统与卫星闪电观测数据的比较分析[J].高电压技术,2011,37(12):2990-2996.
[1] 张晓芸,魏鸣,潘佳文. FY-4闪电资料在厦门强降水监测预警中的应用[J]. 遥感技术与应用, 2019, 34(5): 1082-1090.