Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (5): 1072-1082    DOI: 10.11873/j.issn.1004-0323.2021.5.1072
数据与图像处理     
基于月球观测的FY-3D MERSI-II在轨通道亚像元配准
程思行1(),徐娜2(),吴荣华2,胡秀清2,何玉青1,肖达1,汪子意1
1.北京理工大学 光电学院,北京 100081
2.中国气象局国家卫星气象中心,北京 100081
On-orbit Subpixel Registration of FY-3D MERSI-II based on Lunar Observations
Sixing Cheng1(),Na Xu2(),Ronghua Wu2,Xiuqing Hu2,Yuqing He1,Da Xiao1,Ziyi Wang1
1.School of Optics and Photonics,Beijing Institute of Technology,Beijing 100081,China
2.National Satellite Meteorological Centre,China Meteorological Administration,Beijing 100081,China
 全文: PDF(3978 KB)   HTML
摘要:

月球目标具有受大气影响小且与背景温度差异明显的特点,可以作为通道配准非常稳定的参考源,用于分析不同通道的成像位置。以风云三号D星(FY-3D)搭载的第二代中分辨率光谱成像仪(MERSI-Ⅱ)为例,介绍了一种利用月球图像进行在轨通道配准的方法。通过对MERSI-Ⅱ各通道月球图像进行预处理,并对图像采取亚像元最大相关迭代的方法进行配准,得到亚像素精度的配准参数;利用月球质心距及灰度差值比较法对配准结果进行评价分析。结果表明:基于月球观测的配准方法具有较高的精度,与月球质心距结果一致性优于0.05像素。同时,利用月球配准结果对MERSI-Ⅱ基于发射前测试的配准结果进行了比对验证,发现目前MERSI-Ⅱ在轨配准偏差整体较小,但在短波通道的扫描方向存在0.5个像素左右的偏差,这对后续高精度的定量产品存在影响。利用该配准方法可以发现长期性的通道配准变化规律,为历史数据再定标及后续的定量化遥感产品开发应用打下基础。

关键词: 风云三号MERSI-Ⅱ月球观测在轨空间特性通道配准    
Abstract:

The lunar target has the characteristics of small atmospheric influence and obvious difference from the background temperature. It can be used as a very stable reference source for band registration to analyze the imaging positions of different bands. Taking the second generation Medium Resolution Spectral Imager (MERSI-Ⅱ) on FY-3D as an example, a method of on-orbit registration using the moon is introduced. By preprocessing the moon image of each band of MERSI-Ⅱ, and adopting the method of sub-pixel maximum correlation iteration for image registration, the registration parameters of sub-pixel accuracy are obtained. The registration results were evaluated and analyzed by comparing the centroid distance of the moon and the difference of gray level. The results show that the lunar registration method has high accuracy and the consistency with the lunar centroid distance is better than 0.05 pixel. The registration based on the moon has the advantages of simple and efficient, and is not affected by the spectral differences of instrument bands. It is stable in the registration of absorption bands, and is significantly better than other methods.The on-orbit registration results of MERSI-Ⅱ based on pre-launch test are compared and verified by the lunar registration results. It is found that the on orbit registration deviation of MERSI-Ⅱ is relatively small as a whole, however, there is 0.5pixel deviation in the scanning direction of the shortwave band, which has an impact on the subsequent high-precision quantitative products. The method can be used to find the long-term change law of band registration, which lays a foundation for the re-calibration of historical data and the subsequent development and application of quantitative remote sensing products.

Key words: FY-3D    MERSI-Ⅱ    Lunar observation    On-orbit spatial characteristics    Band registration
收稿日期: 2020-06-22 出版日期: 2021-12-07
ZTFLH:  TP722  
基金资助: 国家重点研发计划项目(2018YFB0504900)
通讯作者: 徐娜     E-mail: 544806480@qq.com;xuna@cma.gov.cn
作者简介: 程思行(1995-),女,安徽黄山人,硕士研究生,主要从事大气遥感方面的研究。E?mail: 544806480@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
程思行
徐娜
吴荣华
胡秀清
何玉青
肖达
汪子意

引用本文:

程思行,徐娜,吴荣华,胡秀清,何玉青,肖达,汪子意. 基于月球观测的FY-3D MERSI-II在轨通道亚像元配准[J]. 遥感技术与应用, 2021, 36(5): 1072-1082.

Sixing Cheng,Na Xu,Ronghua Wu,Xiuqing Hu,Yuqing He,Da Xiao,Ziyi Wang. On-orbit Subpixel Registration of FY-3D MERSI-II based on Lunar Observations. Remote Sensing Technology and Application, 2021, 36(5): 1072-1082.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.5.1072        http://www.rsta.ac.cn/CN/Y2021/V36/I5/1072

图1  MERSI-Ⅱ各焦平面探测器结构排布图
图2  MERSI-II冷空视场采集的多探元单次对月观测图像(通道1, 2018-1-25 08:30~08:35)
图3  MERSI-II探元20在同一时刻对月观测影像(通道1~通道4,2018-1-28 01:30)
图4  中央探元多次对月扫描的成像结果(2017-12-26)
图5  各通道图像成像位置示意图
图6  两通道的月球图像间的相关性系数随配准参数在扫描方向变化而变化的曲线(通道8和通道12)
通道中心波长 /μm

发射前结果

(x方向)

对地观测结果

(x方向)

本实验结果

(x方向)

发射前结果

(y方向)

对地观测结果

(y方向)

本实验结果

(y方向)

8(VIS)0.41243.83.9/-0.1-0.4
9(VIS)0.44322.02.1/0-0.1
1(VIS)0.47000.00.1/00
2(VIS)0.550-8-8.0-7.9/00
10(VIS)0.490-4-4.0-3.9/0-0.2
11(VIS)0.555-6-6.0-6.0/0-0.2
16(VNIR)0.905-10-9.9-9.8/00
17(VNIR)0.936-8-7.9-7.8/00
4(VNIR)0.865-24-24.1-23.9/00
14(VNIR)0.746-4-4.0-3.9/00
12(VNIR)0.670-2-2.0-1.9/00
3(VNIR)0.65000.00.0/00
13(VNIR)0.70922.02.1/00
15(VNIR)0.86544.04.0/00
19(VNIR)1.0366.26.2/00
18(VNIR)0.94088.08.1/00
7(SWIR)2.1366.56.5/0.20.1
5(SWIR)1.38-4-3.8-3.5/00
6(SWIR)1.64-9-8.5-8.3/0.10.4
表1  通道配准结果比对(以通道3为参考通道)
图7  各通道与参考通道(通道3)在扫描方向的质心间距离
图8  各通道与参考通道(通道3)在飞行方向的质心间距离
图9  通道5~7采用3种方法得到的配准差值(相对于参考通道3,2018-1-25)
1 Tilton J C, Lin G, Tan B. Measurement of the band-to-band registration of the SNPP VIIRS imaging system from on-orbit data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016:1-12.DOI: 10.1109/JSTARS.2016.2601561.
doi: 10.1109/JSTARS.2016.2601561
2 Ma J, Chan C W, Canters F. Fully automatic subpixel image registration of multiangle CHRIS/Proba data[J]. IEEE Tran-sactions on Geoscience & Remote Sensing, 2010,48(7):2829-2839.DOI:10.1109/TGRS.2010.2042813.
doi: 10.1109/TGRS.2010.2042813
3 Wu Wenhao, Li Tao, Long Sichuan,et al. Sentinel-1 satellite image interference registration in real time orbit[J]. Journal of Wuhan University (Information Science Edition),2019,44(5):745-750.
3 吴文豪, 李陶, 龙四春,等. 实时轨道条件下Sentinel-1卫星影像干涉配准[J]. 武汉大学学报(信息科学版), 2019,44(5):745-750.
4 Bao Wenxing, Sang Sier, Shen Xiangfei. Research on remote sensing image registration algorithm based on information entropy constraint and KAZE feature extraction[J]. Optical and Precision Engineering,2020,28(8):1810-1819.
4 保文星, 桑斯尔, 沈象飞. 基于信息熵约束和KAZE特征提取的遥感图像配准算法研究[J].光学精密工程,2020,28(8):1810-1819.
5 Wu Y, Ma W , Gong M , et al. A novel point-matching algorithm based on fast sample consensus for image registration[J]. IEEE Geoscience and Remote Sensing Letters,2015,12(1):43-47.DOI:10.1109/LGRS.2014.2325970.
doi: 10.1109/LGRS.2014.2325970
6 Zhang Haitao, Jin Yan, Liu Wanjun. SIFT remote sensing image registration algorithm based on Marr Wavelet[J]. Remote Sensing Technology and Application, 2019, 34(3): 622-629.
6 张海涛, 金燕, 刘万军. 基于Marr小波改进的SIFT算法的遥感影像配准[J]. 遥感技术与应用, 2019, 34(3): 622-629.
7 Hou Pengyang,Ji Yan,Gao Feng,et al. Fast hierarchical registration method for remote sensing image based on SIFT[J]. Remote Sensing Technology and Application, 2014, 29(5): 873-877.
7 侯鹏洋,季艳,高峰,等. 一种基于SIFT特征的快速逐层遥感图像配准方法[J]. 遥感技术与应用, 2014, 29(5): 873-877.
8 Yu Xianchuan, Zhonghua Lü, Hu Dan. Overview of remote sensing image registration technology[J]. Optics and Precision Engineering, 2013, 21(11):2960-2972.
8 余先川, 吕中华, 胡丹. 遥感图像配准技术综述[J]. 光学精密工程, 2013, 21(11):2960-2972.
9 Xiong X, Sun J, Chiang K, et al. MODIS on-orbit characterization using the moon[C]∥ International Symposium on Remote Sensing, 2003.
10 Xiong X , Sun J , Barnes W L. Using the moon for MODIS on-orbit spatial characterization[J]. Proceedings of SPIE The International Society for Optical Engineering, 2004,5234:480-487.
11 Xiong X , Sun J , Angala , et al. Results of MODIS band-to-band registration characterization using on-orbit lunar observations[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2011: 8153.DOI: 10.1117/12.893224.
doi: 10.1117/12.893224
12 Wang Z, Xiong X. VIIRS on-orbit spatial characterization using the moon[J]. IEEE Geoscience and Remote Sensing Letters,2014,11(6):1116-1120. DOI:10.1109/LGRS.2013. 2287791
doi: 10.1109/LGRS.2013. 2287791
13 Wang Z , Xiong X , Li Y. Update of VIIRS on-orbit spatial parameters characterized with the moon[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(10):5486-5494.DOI:10.1109/TGRS.2015.2423633
doi: 10.1109/TGRS.2015.2423633
14 Wang Z , Xiong X , Li Y.An improved algorithm for VIIRS band-to-band registration characterization with lunar observation[C]∥ Earth Observing Systems XX. International Society for Optics and Photonics,2015.
15 Na X , Xinhua N , Xiuqing H , et al. Prelaunch calibration and radiometric performance of the advanced MERSI II on FengYun-3D[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8):4866-4875.DOI: 10.1109/TGRS.2018.2841827
doi: 10.1109/TGRS.2018.2841827
16 Niu Minghui,Chen Fuchun. Methods of on-orbit calibration of satellite radiometer reflective solar bands using the moon[J]. Remote Sensing Technology and Application, 2018, 33(2): 337-341.
16 牛明慧,陈福春. 基于月球反射的遥感仪器在轨定标方法[J]. 遥感技术与应用, 2018, 33(2): 337-341.
17 Chen Lin, Zhang Peng, Wu Ronghua , et al. Monitoring radiometric response change of visible band for FY-2 geostationary meteorological satellite by lunar target[J]. Journal of Remote Sensing,2018,22(2):211-219.
17 陈林, 张鹏, 吴荣华,等.月球目标监测风云二号静止气象卫星可见光辐射响应变化[J]. 遥感学报,2018,22(2):211-219.
18 Wu Ronghua, Zhang Peng, Zheng Xiaobing, et al. Data collection and irradiance conversion of lunar observation for MERSI[J]. Optics and Precision Engineering, 2019,27(8):1819-1827.
doi: 10.3788/OPE.20192708.1819
18 吴荣华, 张鹏, 郑小兵,等.星载成像仪观月数据提取和辐照度转换方法研究[J]. 光学精密工程,2019,27(8):1819-1827.DOI: 10.3788/OPE.20192708.1819.
doi: 10.3788/OPE.20192708.1819
19 Wu Ronghua, Zhang Peng, Yang Zhongdong, et al. Monitor radiance calibration of the remote sensing instrument with reflected lunar irradiance[J]. Journal of Remote Sensing, 2016,20(2):278-289.
19 吴荣华,张鹏,杨忠东,等.基于月球反射的遥感器定标跟踪监测[J]. 遥感学报,201,20(2):278-289.
20 Xiao Da, Xu Na, Hu Xiuqing, et al. 2020: On-orbit detection and correction of crosstalk effect of FY-3D MERSI-II signal[J], Acta Opitca Sinica,2020, 40(10):1011001.肖达,徐娜,胡秀清,等.FY-3D MERSI-Ⅱ 信号串扰效应在轨检测及订正[J].光学学报,2020,40(10):1011001. DOI:10.3788/AOS202040.1011001.
doi: 10.3788/AOS202040.1011001
[1] 谷松岩,郭杨,窦芳丽,吴琼,卢乃锰. 风云三号微波大气探测载荷辐射定标[J]. 遥感技术与应用, 2021, 36(1): 141-154.
[2] 范悦,邱建秀,董建志,张小虎,王大刚. 基于Triple Collocation方法的微波土壤水分产品不确定性分析与时空变化规律研究[J]. 遥感技术与应用, 2020, 35(1): 85-96.
[3] 王振占,李娇阳. 风云三号卫星微波探测仪定标原理及算法[J]. 遥感技术与应用, 2019, 34(6): 1197-1204.
[4] 谷松岩,王振占,卢乃锰,杨忠东,李靖,张升伟,杨磊,吴雪宝. 风云三号微波湿度计航空校飞辐射定标原理及数据分析[J]. 遥感技术与应用, 2019, 34(6): 1205-1211.
[5] 赵宏宇, 郝晓华, 郑照军, 王建, 李弘毅, 黄广辉, 邵东航, 王轩, 高扬, 雷华锦. 基于FY-3D/MERSI-Ⅱ的积雪面积比例提取算法[J]. 遥感技术与应用, 2018, 33(6): 1004-1016.
[6] 张帅,师春香,梁晓,贾炳浩,吴捷. 风云三号积雪覆盖产品评估[J]. 遥感技术与应用, 2018, 33(1): 35-46.