Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (5): 1209-1222    DOI: 10.11873/j.issn.1004-0323.2021.5.1209
遥感应用     
典型地表对长沙主城区地表温度的影响分析
郭俊钰1,2,3(),戴礼云2,梁继1,3(),王琼1,3
1.湖南科技大学地理空间信息技术国家地方联合工程实验室,湖南 湘潭 411201
2.中国科学院西北生态环境资源研究院 遥感与地理信息科学研究室,甘肃 兰州 730000
3.湖南科技大学资源环境与安全工程学院,湖南 湘潭 411201
Typical Land Cover Impacts on Land Surface Temperature of Changsha Metropolitan Area
Junyu Guo1,2,3(),Liyun Dai2,Ji Liang1,3(),Qiong Wang1,3
1.National-Local Joint Engineering Laboratory of Geo-Spatial information Technology in the Hunan University of Science and Technology,Xiangtan 411201,China
2.Northwest Institute of Eco-Environment and Resources Institute,Chinese Academy of Sciences,Lanzhou 730000,China
3.School of resource Environment and Safety engineering,Hunan University of Science and Technology,Xiangtan 411201,China
 全文: PDF(7590 KB)   HTML
摘要:

城市热岛是一种城市地区温度比郊区温度高的现象,它可改变城市的自然和社会过程,引发一系列环境问题。利用Landsat 8 TIRS10波段的单通道算法(TIRS10_SC算法)反演了长沙主城区2013年7月、2016年3月、7月和11月4景Landsat 8影像的地表温度,并进一步分析了地表温度的时空分布特征,建设用地、绿地、河流以及不同材质的屋顶等典型地表对主城区地表温度的影响。结果表明:①长沙火车站沿线、高桥大市场和部分工厂在各个时期均为高温区。2016年7月浏阳河周边区域热岛效应相对于2013年7月有所缓解,主要由天气情况的不同以及拆迁改变地表覆盖性质等造成。3月建设用地中比率最大的为中温, 7月建设用地中比率最大的为次高温。3月和7月,绿地中比率最大的为次低温,水体中比率最大的为低温。而11月,建设用地和绿地中比率最大的为中温,水体中比率最大的次高温。②河流周边120 m范围内,由陆地向河流每减少30 m,7月建设用地平均温度减少0.93~1.26 ℃,绿地平均温度减少0.57~0.99 ℃;3月建设用地平均温度减少0.51~0.78 ℃,绿地平均温度减少0.3~0.57 ℃。河流的降温强度与河水温度和距离河流120 m以上的地表温度的差值大小有关。③负的MNDWI(非水体)与地表温度呈正相关关系,正的MNDWI(水体区域)与地表温度3月和7月呈负相关关系,11月呈正相关关系。④地表比辐射率对地表温度反演的结果影响显著,利用NDVI估算地表比辐射率难以区分高反射率的屋顶与其他类型的建设用地。因此,针对高反射率屋顶对地表比辐射率的影响有待进一步研究,以提高城区地表温度的反演精度,为减缓城市热岛效应提供参考依据。

关键词: 地表温度河流MNDWI地表比辐射率    
Abstract:

Urban heat island is a phenomenon that the temperature of urban area is higher than suburb, which can change the natural and social process of city and causes a series of environmental problems. In this paper, Single-channel algorithm for Landsat 8 TIRS10 band (TIRS10_SC algorithm) is used to retrieval the land surface temperature of four landscape Landsat 8 images in Changsha metropolitan area in July 2013, March 2016, July 2016 and November 2016. This paper further analyzes the influence of typical land surfaces such as construction land, green land, rivers and roofs of different materials on the land surface temperature, the results indicate that: (1) The areas with high LST were located in Changsha Railway Station, the Gaoqiao Market and some factories at all times. Compared with July 2013, the heat island effect in the surrounding area of Liuyang River was alleviated in July 2016, which was mainly caused by the different weather conditions and the change of land cover nature by demolition. The largest ratio of construction land in March was moderate LST zone. The highest ratio of construction land in July was sub-high LST zone. In March and July, the highest ratio among green areas is sub-low LST zone, the largest ratio in water is low LST zone. In November, the highest ratio of construction land and green space was medium LST zone, and the sub-highest LST zone in water was the highest; (2) Within 120 m around the river, for every 30 m decrease from land to river, the average temperature of construction land decreased by 0.93~1.26 ℃ and the average temperature of green land decreased by 0.57~0.99 ℃ in July. The average temperature of construction land decreased by 0.51~0.78 ℃ and the average temperature of green land decreased by 0.3~0.57 ℃ in March. The cooling intensity of the river is related to the difference between the river temperature and LST more than 120 m away from the river; (3) Negative MNDWI is positively correlated with land surface temperature and positive MNDWI is negatively correlated with land surface temperature in March and July. However, MNDWI is positively correlated with land surface temperature in November; (4) Emissivity has a significant effect on the results of land surface temperature inversion. It is difficult to distinguish the high reflectivity roofs and other types of construction land by using NDVI to estimate emissivity. Therefore, the influence of high-reflectivity roofs on emissivity needs to be further studied to improve the inversion accuracy of land surface temperature and provide a reference for mitigating the urban heat island effect.

Key words: Land Surface Temperature    River    MNDWI    Emissivity
收稿日期: 2020-04-15 出版日期: 2021-12-08
ZTFLH:  X16  
基金资助: 国家自然科学基金项目(41671351);国家级大学生创新创业训练计划项目(201810534001);湖南省教育厅重点项目(19A166);湖南科技大学科技创新“卓越学子”培育计划项目(EY180104);湖南科技大学科研创新团队建设项目(CXTD004)
通讯作者: 梁继     E-mail: jyguo12@163.com;leung@lzb.ac.cn
作者简介: 郭俊钰(1995-),男,江西赣州人,硕士研究生,主要从事城市热环境遥感研究。E?mail:jyguo12@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭俊钰
戴礼云
梁继
王琼

引用本文:

郭俊钰,戴礼云,梁继,王琼. 典型地表对长沙主城区地表温度的影响分析[J]. 遥感技术与应用, 2021, 36(5): 1209-1222.

Junyu Guo,Liyun Dai,Ji Liang,Qiong Wang. Typical Land Cover Impacts on Land Surface Temperature of Changsha Metropolitan Area. Remote Sensing Technology and Application, 2021, 36(5): 1209-1222.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.5.1209        http://www.rsta.ac.cn/CN/Y2021/V36/I5/1209

图1  2011~2019年全国省会城市累计高温天数排名前五
图2  长沙主城区研究范围图
日期11时气温日期11时气温
2013-07-3135.6℃2016-07-2332.8℃
2016-03-0116.1℃2016-11-2812.7℃
表1  长沙气象站观测数据
大气模式水汽含量大气透过率估算公式
中纬度夏季大气0.2~2.0τ10=0.7029-0.0620w
2.0~5.6τ10=0.9220-0.0780w
5.6~6.8τ10=0.5422-0.0735w
中纬度冬季大气0.2~1.4τ10=0.9228-0.0735w
表2  Landsat 8大气透过率与水汽含量的关系
大气模式大气平均作用温度估算方程
中纬度夏季Ta=16.0110+0.92621?T0
中纬度冬季Ta=19.2704+0.91118?T0
表3  大气平均作用温度估算方法
热岛强度等级温度范围
低温Tni<Tmean-1.5S
次低温Tmean-1.5STni<Tmean-0.5S
中温Tmean-0.5STni<Tmean+0.5S
次高温Tmean+0.5STni<Tmean+1.5S
高温Tni>Tmean+1.5S
表4  热岛强度等级划分标准
水体绿地裸地建设用地
2013-07-31388011143
2016-03-0138739152
2016-07-2338748152
2016-11-2838698157
表 5  随机点地表覆盖类型统计表
图3  随机点分布图
日期总体分类精度/%Kappa系数
2013-07-3191.35730.8648
2016-03-0195.69120.9342
2016-07-2394.84850.9212
2016-11-2893.92050.9067
表6  地表覆盖分类精度评价结果
图4  地表覆盖分类结果
图5  热岛等级划分结果
日期河流河流温度/℃河流宽度/m
2013-07-31湘江27.71896
浏阳河30.77132
捞刀河30.67121
2016-03-01湘江15.38892
浏阳河18.30124
捞刀河17.84120
2016-07-23湘江26.87988
浏阳河28.46179
捞刀河29.03167
2016-11-28湘江16.59898
浏阳河15.84131
捞刀河15.28120
表7  河流平均温度与宽度统计表
图6  地表温度直方图统计曲线
历史日期最高温最低温历史日期最高温最低温
20130729372920160228228
20130730382920160229197
201307313930201603012110
20160721352820161126103
20160722362920161127144
20160723372920161128155
表 8  历史日期的气温统计 (℃)
热岛分级2013-07-312016-03-01
建设用地绿地水体裸地建设用地绿地水体裸地
低温0.066.8765.131.850.411.5969.641.24
次低温4.0856.1830.453.586.5653.4123.0810.14
中温33.5832.853.8243.3844.0241.456.2955.97
次高温52.944.070.4848.2639.623.410.9730.85
高温9.340.030.112.939.390.130.021.80
热岛分级2016-07-232016-11-28
建设用地绿地水体裸地建设用地绿地水体裸地
低温0.153.8664.101.663.385.510.681.93
次低温5.7158.3129.383.2217.0538.189.667.52
中温36.2931.635.5656.4340.7850.4621.7437.45
次高温46.126.010.8436.8328.965.5067.8248.44
高温11.730.190.131.869.840.360.104.66
表9  热岛强度分级在各类土地覆盖的面积占比统计表 (%)
图7  缓冲区地表温度与建设用地比例图
日期

缓冲区120 m内

地表平均温度

湘江浏阳河捞刀河
拟合公式R2拟合公式R2拟合公式R2
2013-07-31建设用地平均温度y1=30.04+0.042x0.984y1=31.06+0.044x0.994y1=31.08+0.035x0.980
绿地平均温度y2=29.26+0.024x0.991y2=30.64+0.03x0.986y2=30.39+0.021x0.992
2016-03-01建设用地平均温度y1=17.77+0.026x0.989y1=18.67+0.022x0.988y1=18.20+0.017x0.995
绿地平均温度y2=17.25+0.016x0.981y2=18.20+0.015x0.968y2=16.54+0.019x0.934
2016-07-23建设用地平均温度y1=28.85+0.031x0.982y1=29.18+0.033x0.992y1=29.06+0.032x0.979
绿地平均温度y2=27.54+0.023x0.991y2=28.35+0.033x0.982y2=28.99+0.019x0.976
表 10  缓冲距离与各类土地覆盖的地表平均温度拟合分析
图8  LST与MNDWI关系图
图9  表11不同材质屋顶的地表温度、辐射亮度与地表比辐射率的分布图调整地表比辐射率及其对应的地表温度变化
地表比辐射率地表温度/℃增加量/℃地表比辐射率地表温度/℃增加量/℃地表比辐射率地表温度/℃增加量/℃
0.96-6.310.91-3.860.510.86-1.130.57
0.95-5.840.470.9-3.340.520.85-0.550.58
0.94-5.360.480.89-2.810.530.840.050.60
0.93-4.870.490.88-2.260.550.830.660.61
0.92-4.370.500.87-1.710.560.821.290.63
表11  调整地表比辐射率及其对应的地表温度变化
1 Ji Chongping, Liu Weidong, Xuan Chunyi. Impact of urban growth on the Heat Island in Beijing[J]. Chinese Journal of Geophysics, 2006(1):69-77.
1 季崇萍,刘伟东,轩春怡.北京城市化进程对城市热岛的影响研究[J].地球物理学报,2006(1):69-77.
2 Ge Weiqiang, Zhou Hongmei, Yang Yinming, et al. The study of city green reducing Thermal Island Effect based on RS and GIS[J]. Remote Sensing Technology and Application,2006,21(5):432-435.
2 葛伟强,周红妹,杨引明,等.基于遥感和GIS的城市绿地缓解热岛效应作用研究[J].遥感技术与应用,2006,21(5):432-435.
3 Hu Hualang, Chen Yunhao, Gong Adu. Advances in the application of remotely sensed date to the study of Urban Heat Island[J]. Remote Sensing for Land & Resources,2005(3):5-9,13.
3 胡华浪,陈云浩,宫阿都.城市热岛的遥感研究进展[J].国土资源遥感,2005(3):5-9,13.
4 Xiao Rongbo, Ouyang Zhiyun, Li Weifeng, al et, A review of the eco-environmental consequences of Urban Heat Islands[J]. Acta Ecologica Sinica ,2005,25(8):2055-2060.
4 肖荣波,欧阳志云,李伟峰,等.城市热岛的生态环境效应[J].生态学报,2005,25(8):2055-2060.
5 Xiao Rongbo, Ouyang Zhiyun, Zhang Zhaoming, et al. Advances in methodology of Urban Heat Island[J]. Meteorological Monthly,2005(11):4-7.
5 肖荣波,欧阳志云,张兆明,等. 城市热岛效应监测方法研究进展[J].气象,2005(11):4-7.
6 Ye Ke, Qin Zhihao. A Study of Urban Heat Island in summer of Nanjing based on MODIS data[J]. Remote Sensing Technology and Application, 2006,21(5):426-431.
6 叶柯,覃志豪.基于MODIS数据的南京市夏季城市热岛分析[J].遥感技术与应用,2006,21(5):426-431.
7 Yang Yingbao, Su Weikang, Jiang Nan. Time-space character analysis of Urban Heat Island effect in Nanjing City using remote sensing[J]. Remote Sensing Technology and Application, 2006,21(6):488-492,479.
7 杨英宝,苏伟忠,江南.南京市热岛效应时空特征的遥感分析[J].遥感技术与应用,2006,21(6):488-492,479.
8 Zhang Yong, Yu Tao, Gu Xingfa, et al. Land surface temperature retrieval from CBERS-02 IRM SS thermal infrared data and its applications in quantitative analysis of Urban Heat Island effect[J]. Journal of Remote Sensing,2006,10(5):789-797.
8 张勇,余涛,顾行发,等.CBERS-02 IRMSS热红外数据地表温度反演及其在城市热岛效应定量化分析中的应用[J].遥感学报,2006,10(5):789-797.
9 Wang Jiankai,Wang Kaicun,Wang Pucai.Urban Heat(or Cool) Island over Beijing from MODIS land surface temperature[J]. Journal of Remote Sensing,2007,11(3):330-339.
9 王建凯,王开存,王普才.基于MODIS地表温度产品的北京城市热岛(冷岛)强度分析[J].遥感学报,2007,11(3):330-339.
10 Wang Meiya, Xu Hanqiu, Li Xia, et al. Analysis on spatiotemporal variation of Urban Impervious Surface and its influence on Urban Thermal Environment: Fuzhou City,China[J].Journal of Basic Science and Engineering,2018,26(6):1316-1326.
10 王美雅,徐涵秋,李霞,等. 不透水面时空变化及其对城市热环境影响的定量分析——以福州市建成区为例[J].应用基础与工程科学学报,2018,26(6):1316-1326.
11 Wang Meiya, Xu Hanqiu, Fu Wei, et al. Spatio-temporal variation of Urban Surface Water and its influence on Urban Thermal Environment[J]. Scientia Geographica Sinica,2016,36(7):1099-1105.
11 王美雅,徐涵秋,付伟,等. 城市地表水体时空演变及其对热环境的影响[J].地理科学,2016,36(7):1099-1105.
12 Chen Yanhong, Cai Yuanbin, Tong Chuan. Temperature effect under the green space evolution based on remote sensing: a case study of Fuzhou, China[J].Acta Ecologica Sinica,2020,40(7):1-13.
12 陈燕红,蔡芫镔,仝川.基于遥感的城市绿色空间演化过程的温度效应研究——以福州主城区为例[J].生态学报,2020,40(7):1-13].
13 Liu Xuemei,Gao Xiaohong,Jia Wei. Spatio-temporal change of Urban Heat Island effect in Xining from landsat image[J]. Journal of Earth Environment,2019,10(2):166-176.
13 刘雪梅,高小红,贾伟.基于遥感影像的近30年西宁市热岛效应时空变化[J].地球环境学报,2019,10(2):166-176.
14 Zhang Qifei,Wen Ya,Wu Zhifeng,et al. Seasonal variations of the Cooling Effect of Water landscape in high-density Urban built-up area: A case study of the denter urban district of Guangzhou[J]. Ecology and Environmental Sciences,2018,27(7): 1323-1334.
14 张棋斐,文雅,吴志峰,等.高密度建成区湖泊水体的热缓释效应及其季相差异——以广州市中心城区为例[J].生态环境学报,2018,27(7):1323-1334.
15 Nie Chong, Yang Jun, Huang Conghong. Analysis of the regulation effect of surface water bodies in urban Beijing on its thermal environment[J]. Journal of Basic Science and Engineering,2019,27(6):1258-1268.
15 聂冲,杨军,黄从红.北京城区地表水体对城市热环境的调节作用分析[J].应用基础与工程科学学报,2019,27(6):1258-1268.
16 Li Xiaoyong, Kuang Wenhui. The effects of urban land cover composition and structure on land surface temperature in Beijing,Tianjin,and Shijiazhuang[J]. Chinese Journal of Ecology,2019,38(10):3057-3065.
16 李孝永,匡文慧.北京、天津和石家庄城市地表覆盖组分与结构特征对地表温度的影响[J].生态学杂志,2019,38(10):3057-3065.
17 Lin Zhongli, Xu Hangqiu. Comparative Study on the Urban Heat Island effect in “Stove Cities” during the last 20 years[J]. Remote Sensing Technology and Application, 2019, 34(3):521-530.
17 林中立, 徐涵秋. 近20年来新旧“火炉城市”热岛状况对比研究[J]. 遥感技术与应用, 2019, 34(3): 521-530.
18 Ma Jing, Wang Qingmei, Ji Mengda, et al. Remote sensing analysis of Heat Island effect in Changchun city[J]. Science of Surveying and Mapping,2019,44(8):61-69.
18 马晶,王青妹,纪梦达,等.长春市城区热岛效应遥感分析[J].测绘科学,2019,44(8):61-69.
19 Xia Junshi, Du Peijun, Zhanghairong, et al. The Quantitative relationship between land surface temperature and land cover types based on remotely sensed data[J]. Remote Sensing Technology and Application, 2010,25(1):15-23.
19 夏俊士,杜培军,张海荣,等. 基于遥感数据的城市地表温度与土地覆盖定量研究[J].遥感技术与应用,2010,25(1):15-23.
20 Bai Yang, Wang Min, Meng Hao, et al. Relationship between land surface temperature and land cover in rapid urbanization process of Shanghai[J]. Environmental Pollution & Control, 2013,35(6):49-54,
20 77[白杨,王敏,孟浩,等.上海市快速城市化过程中地表温度与地表覆盖的关系研究[J].环境污染与防治,2013,35(6):49-54,77.]
21 Liang Baoping, Ma Yifang, Li Hui. Research on cooling effect of the landscape green space and urban water in Guilin City[J].Ecology and Environmental Sciences, 2015, 24(2): 278-285.
21 梁保平,马艺芳,李晖.桂林市典型园林绿地与水体的降温效应研究[J].生态环境学报,2015,24(2):278-285.
22 Zhou Yi, Qi Hua. The Spatio-temporal pattern and change of Urban Heat Island in Chengdu based on Landsat 8[J]. Geomatics World,2019,26(2):7-12,20.
22 周毅,齐华.基于Landsat 8的成都市城市热岛时空格局变化研究[J].地理信息世界,2019,26(2):7-12,20.
23 Situ Yanna. Study on thermal environment effect of urban water body in Guangzhou[D]. Guangzhou:Sun Yat-sen University,2017.
23 司徒艳娜. 广州市城市水体的热环境效应研究[D].广州:中山大学,2017.
24 Tian Pengfei, Cai Najia, Zhang Ling, et al. Correlation analysis on Urban Heat Island effect and land surface parameters & study on effect of water on Urban Heat Island[J]. Modern Agricultural Science and Technology,2013(13):232-235.
24 田鹏飞,蔡娜佳,张玲,等.热岛效应与地表参数的相关性分析及水体对热岛的影响研究[J].现代农业科技,2013(13):232-235.
25 Li Donghai, Ai Bin, Li Xia. Urban water body alleviating Heat Island effect based on RS and GIS: A Case Study of Dongguan City[J]. Tropical Geography,2008,28(5):414-418.
25 李东海,艾彬,黎夏.基于遥感和GIS的城市水体缓解热岛效应的研究——以东莞市为例[J].热带地理,2008,28(5):414-418.
26 Lin Hao, Niu Jiqiang, Ma Huiqin, et al. Urban water body reduce of Heat Island Effect: A case study of Nanjing city[J]. Journal of Xinyang Normal University(Natural Science Edition),2017,30(2):234-238.
26 林昊,牛继强,马会钦,等.城市水体对热岛的消减效应——以南京市为例[J].信阳师范学院学报(自然科学版),2017,30(2):234-238.
27 Yue Wenze, Xu Lihua. Thermal environment effect of urban water landscape[J]. Acta Ecologica Sinica, 2013,33(6):1852-1859.
27 岳文泽,徐丽华.城市典型水域景观的热环境效应[J].生态学报,2013,33(6):1852-1859.
28 Zeng Suping, Shi Zhuo, Zhao Meifang, et al.The fariation of buffer performance of water bodies on Urban Heat Island along riverbank distance[J]. Acta Ecologica Sinica.2020,40(15):5190-5202.曾素平,时琢,赵梅芳,等.城市水体对热岛的缓冲性能沿河岸距离的变化规律[J].生态学报,2020,40(15):5190-5202
29 Le Tongchao, Nie Sen, Pan Hui, et al. Land surface temperature retrieval and Urban Heat Island effect based on Landsat 8 image in Fuzhou city[J]. Journal of Northwest Forestry University,2019,34(5):154-160.
29 乐通潮,聂森,潘辉,等.基于Landsat 8卫星影像的地表温度反演及福州春季城市热岛效应分析[J].西北林学院学报,2019,34(5):154-160.
30 Yuan Zhen, Wu Xiangli, Zang Shuying, et al. Cooling effect of green patche based on TM image in Harbin downtown city[J]. Scientia Geographica Sinica,2017,37(10):1600-1608.
30 袁振, 吴相利, 臧淑英,等.基于TM影像的哈尔滨市主城区绿地降温作用研究[J]. 地理科学,2017,37(10):1600-1608.
31 Xiong Ying, Zhang Fang. Thermal environment effects of urban human settlements and influencing factors based on multi-source data: A case study of Changsha city[J]. Acta Geographica Sinica,2020,75(11):2443-2458.
31 熊鹰,章芳.基于多源数据的长沙市人居热环境效应及其影响因素分析[J].地理学报,2020,75(11):2443-2458.
32 Ye Yü, Qin Jianxin, Hu Shunshi. Spatial-temporal evolution of Urban Heat Island Effects in Changsha city[J]. Journal of Geo-information Science, 2017,19(4):518-527.
32 叶钰,秦建新,胡顺石.长沙市热岛效应时空特征变化研究[J].地球信息科学学报,2017,19(4):518-527.
33 He Bingwei, Han Qinzhe. Study on urban thermal environment effect of Changsha based on Landsat 8 OLI/TIRS Image[J]. Hubei Agricultural Sciences,2020,59(11):69-75,80.
33 何炳伟,韩沁哲. 基于Landsat-8 OLI/TIRS 影像的长沙市城市热环境效应研究[J].湖北农业科学,2020,59(11):69-75,80.
34 Wang Z, Liu M, Liu X, et al. Spatio-temporal evolution of surface Urban Heat Islands in the Chang-Zhu-Tan urban agglomeration[J]. Physics and Chemistry of the Earth.2020,117:102865. DOI: 10.1016/j.pce.2020.102865.
doi: 10.1016/j.pce.2020.102865
35 Changsha Municipal People's Government. Brief Introduction of Changsha[EB/OL]..[2019-05-19].
35 长沙市人民政府.走进快乐长沙[EB/OL]..[2019-05-19.
36 Hu Deyong, Qiao Kun, Wang Xingling, et al. Land surface temperature retrieval from Landsat 8 thermal infrared data using mono-window algorithm[J]. Journal of Remote Sensing, 2015, 19(6): 964-976.
36 胡德勇,乔琨,王兴玲,等. 单窗算法结合Landsat 8热红外数据反演地表温度[J]. 遥感学报, 2015, 19(6): 964-976.
37 Wang F, Qin Z, Song C, et al. An Improved mono-window algorithm for Land Surface Temperature retrieval from Landsat 8 thermal infrared sensor data[J].Remote Sensing, 2015,7:4268-4289.DOI: 10.3390/rs70404268.
doi: 10.3390/rs70404268
38 Qin Zhihao, Li Wenjuan, Xu Bin, et al. The estimation of land surface emissivity for Landsat TM6[J].Remote Sensing for Land and Resources, 2004(3): 28-32,36-41,74.
38 覃志豪,李文娟,徐斌,等.陆地卫星TM6波段范围内地表比辐射率的估计[J]. 国土资源遥感,2004(3):28-32,36-41,74.
39 Sobrino J A, Jiménez-Munoz J C, Sòria G, et al. Land surface emissivity retrieval from different VNIR and TIR sensors[J].IEEE Transactions on Geoscience and Remote Sensing, 2008, 46:316-327. DOI: 10.1109/TGRS.2007.904834.
doi: 10.1109/TGRS.2007.904834
40 Deng Shubin, Cheng Qiujin, Du Huijian, et al. ENVI remote sensing image processing method (2nd Edition)[M]. Beijing: Higher Education Press,2014.邓书斌,陈秋锦,杜会建,等.ENVI遥感图像处理方法(第二版)[M]. 北京:高等教育出版社, 2014.
41 Han Ling, Zhang Yu, Wang Xiaofeng, et al. Land use change and Heat Island effect in Xi’an city[M]. Beijing: Science Press.2018.韩玲,张瑜,王晓峰,等.西安市土地利用变化及热岛效应[M]. 北京:科学出版社,2018.
42 Qiao Zhi, Huang Ningyu, Xu Xinliang, et al. Spatio-temporal pattern and evolution of the urban thermal landscape in metropolitan Beijing between 2003 and 2017[J]. Acta Geographica Science,2019,74(3):475-489.
42 乔治,黄宁钰,徐新良,等. 2003~2017年北京市地表热力景观时空分异特征及演变规律[J].地理学报,2019,74(3):475-489.
43 Xun Hanqiu. A study on information extraction of water body with the Modified Normalized Difference Water Index (MNDWI)[J].Journal of Remote Sensing, 2005,9(5):589-595.
43 徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005,9(5):589-595.
[1] 王皓,郝莹,袁松,陈光舟,靳莉莉. SMAP土壤水分产品在淮河流域的适用性评估[J]. 遥感技术与应用, 2021, 36(5): 1009-1021.
[2] 孙赛钰,王维真,徐菲楠. 黑河流域中上游水热通量足迹模型的对比分析[J]. 遥感技术与应用, 2021, 36(4): 887-897.
[3] 肖尧,马明国,闻建光,于文凭. 复杂地表地表温度反演研究进展[J]. 遥感技术与应用, 2021, 36(1): 33-43.
[4] 杨玉婷,汤家法,边金虎,李爱农,雷光斌,黄平,蒋梓淳. 加尔各答市地表温度与不透水面比例季相相关性研究[J]. 遥感技术与应用, 2021, 36(1): 79-89.
[5] 程雨婷,刘昭华,鹿琳琳,刘士彪,李庆亭. 一带一路沿海超大城市热岛时空特征遥感分析[J]. 遥感技术与应用, 2020, 35(5): 1197-1205.
[6] 史姝姝,匡文慧,董斯齐. 21世纪以来西安城乡梯度土地覆盖变化及对城市热岛影响时空特征[J]. 遥感技术与应用, 2020, 35(3): 537-547.
[7] 张新平,乔治,李皓,闫杰,张芳芳,赵栋锋,王得祥,康海斌,杨航,冯扬. 基于Landsat影像和不规则梯形方法遥感反演延安城市森林表层土壤水分[J]. 遥感技术与应用, 2020, 35(1): 120-131.
[8] 罗家顺,邱建秀,赵天杰,王大刚. 基于Sentinel-1数据的黑河中游土壤水分反演[J]. 遥感技术与应用, 2020, 35(1): 23-32.
[9] 陆峥,韩孟磊,卢麾,彭雪婷,蒙莎莎,刘进,杨晓帆. 基于AMSR2多频亮温的黑河流域中上游土壤水分估算研究[J]. 遥感技术与应用, 2020, 35(1): 33-47.
[10] 黄桂平,曹艳萍. TRMM卫星3B43降水数据在黄河流域的精度分析[J]. 遥感技术与应用, 2019, 34(5): 1111-1120.
[11] 田慧慧, 冯 莉, 赵璊璊, 郭 松, 董继伟. 无人机热红外城市地表温度精细特征研究 [J]. 遥感技术与应用, 2019, 34(3): 553-563.
[12] 张博, 吴立宗. 基于Spark的分布式青藏高原MODIS LST插值方法实现研究[J]. 遥感技术与应用, 2018, 33(6): 1178-1185.
[13] 汪子豪, 秦其明, 孙元亨.

基于BP神经网络的地表温度空间降尺度方法 [J]. 遥感技术与应用, 2018, 33(5): 793-802.

[14] 王恺宁, 王修信, 黄凤荣, 罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[15] 石满, 陈健, 覃帮勇, 李盛阳. 天宫二号数据地表温度反演及其在城市群热环境监测中的应用[J]. 遥感技术与应用, 2018, 33(5): 811-819.