Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (5): 997-1008    DOI: 10.11873/j.issn.1004-0323.2021.5.0997
土壤水分专栏     
基于宇宙射线观测的喀斯特槽谷区典型流域土壤水分反演研究
彭书艳(),赵龙(),李婷婷,韩旭军,马明国,杨帅,杨跃程
西南大学地理科学学院,重庆金佛山喀斯特生态系统国家野外科学观测研究站,重庆 400715
Retrieval of Cosmic-Ray-based Soil Moisture over a Typical Karst Watershed
Shuyan Peng(),Long Zhao(),Tingting Li,Xujun Han,Mingguo Ma,Shuai Yang,Yuecheng Yang
Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station,School of Geographical Sciences,Southwest University,Chongqing 400715,China
 全文: PDF(4361 KB)   HTML
摘要:

宇宙射线中子法是一种百米尺度的土壤水分无损测量方法。基于重庆市青木关槽谷区多个站点的多层土壤水分观测数据,针对宇宙射线土壤水分观测系统(COSMOS)同步测得的中子序列开展了土壤含水量反演研究。在反演算法研究过程中,引入S-G滤波对COSMOS快中子数进行平滑,分析了植被含水量的影响,探索和优化了算法率定和验证阶段不同的数据筛选方案。结果表明:该区域植被含水量对COSMOS反演结果影响较小,且考虑全时段土壤水分水平下发展的算法能得到与实测区域平均更为一致的土壤水分序列。最后应用该反演算法进一步生成了COSMOS观测时段的长时间序列土壤水分产品,并与周边相邻土壤水分观测进行间接验证,揭示了该区域的土壤水分季节变化特征。该研究发展的COSMOS土壤水分反演算法在该区域展现了较强的适用性,可为重庆市青木关喀斯特槽谷区典型流域的区域尺度土壤水分观测与水文气象分析提供支持。

关键词: COSMOS土壤水分反演算法植被含水量S?G滤波    
Abstract:

The cosmic-ray is a non-destructive method of measuring soil moisture at the 100-meter scale. Using multi-layer observations from a dense monitoring network, this study explores the retrieval of soil water content through fast neutron time series obtained from COsmic-ray Soil Moisture Observing System (COSMOS) in a typical Karst watershed in Qingmuguan, Chongqing. Some specific treatments/investigations are conducted toward improving the overall retrieving accuracy, including ①using Savitzky-Golay filter to smooth the fast neutron time series; ②analyzing the role of vegetation water content, and ③comparing different data screening schemes during the calibration and verification phrases. Results suggest that the vegetation water content has negligible impacts on the COSMOS retrieving in this specific area, and the calibration by considering longer and different soil moisture records delivers the best agreement with the ground truth. Finally, the calibrated algorithm was applied to the whole COSMOS measuring period to produce a complete soil moisture record, which is further indirectly verified with neighboring soil moisture and precipitation observations, and help reveal the seasonal soil water content variations. In general, the proposed COSMOS soil moisture retrieval algorithm shows robust applicability and is expected to support regional scale of long-term soil moisture monitoring and hydrometeorological studies in this region.

Key words: COSMOS    Soil moisture    Retrieval algorithm    Vegetation water content    Savitzky-Golay filter
收稿日期: 2021-03-28 出版日期: 2021-12-08
ZTFLH:  S152.7  
基金资助: 国家自然科学基金项目(41805133);国家重点研发计划(2018YFA0605400);国家级大学生创新创业训练计划项目(202010635101)
通讯作者: 赵龙     E-mail: pengshuyan_swu@163.com;zhaol04@swu.edu.cn
作者简介: 彭书艳(1996-),女,贵州仁怀人,本科生,主要从事遥感与GIS应用相关研究。E?mail: pengshuyan_swu@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
彭书艳
赵龙
李婷婷
韩旭军
马明国
杨帅
杨跃程

引用本文:

彭书艳,赵龙,李婷婷,韩旭军,马明国,杨帅,杨跃程. 基于宇宙射线观测的喀斯特槽谷区典型流域土壤水分反演研究[J]. 遥感技术与应用, 2021, 36(5): 997-1008.

Shuyan Peng,Long Zhao,Tingting Li,Xujun Han,Mingguo Ma,Shuai Yang,Yuecheng Yang. Retrieval of Cosmic-Ray-based Soil Moisture over a Typical Karst Watershed. Remote Sensing Technology and Application, 2021, 36(5): 997-1008.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.5.0997        http://www.rsta.ac.cn/CN/Y2021/V36/I5/997

图1  研究区COSMOS和土壤水分观测网站点空间分布示意图
图2  COSMOS反演算法相关数据示意图
图3  研究区COSMOS土壤水分有效探测深度z (cm)
图4  S-G滤波中不同窗口长度下COSMOS反演得到的与站点实测的土壤水分相关系数
图5  修正基础上经S-G滤波处理的快中子数和原修正后的快中子数时间序列
筛选方案率定数据验证数据
方案一每隔一条数据记录选择一条所用序列中剩余的数据
方案二每三条数据记录中选择前两条所用序列中剩余的数据
方案三所用序列的前1/2所用序列的后1/2
方案四所用序列的前2/3所用序列的后1/3
表1  针对N0率定的不同数据筛选方案
图6  四种标定方案得到的(验证部分)COSMOS与实测深度加权的土壤水分散点图
图7  算法发展时间窗口内站点实测和COSMOS反演得到的土壤水分时间序列
图8  整个COSMOS观测时段反演与站点实测深度加权的土壤水分以及降水时间序列对比
1 Yang K, Qin J, Zhao L, et al. A multi-scale soil moisture and freeze-thaw monitoring network on The Third Pole[J]. Bulletin of the American Meteorological Society, 2013, 94: 1907-1916. DOI: 10.1175/BAMS-D-12-00203.1.
doi: 10.1175/BAMS-D-12-00203.1
2 Zreda M, Desilets D, Ferre T P A, et al. Measuring soil moisture content non-invasively at intermeditate spatial scale using cosmic-ray neutrons[J]. Geophysical Research Letters, 2008, 35(21): L21402. DOI:10.1029/2008GL035655.
doi: 10.1029/2008GL035655
3 Jia Xiaojun, Shi Shengjin, Huang Binxiang, et al. Principles and application of cosmic-ray neutron method for measuring soil moisture[J]. Chinese Agricultural Science Bulletin, 2014, 30(21):113-117.
3 贾晓俊,施生锦,黄彬香,等.宇宙射线中子法测量土壤水分的原理及应用[J].中国农学通报,2014,30(21):113-117.
4 Jiao Qishun, Zhu Zhongli, Liu Shaomin, et al. Research and application of cosmic-ray fast neutron method to measure soil moisture in the field[J]. Advances in Earth Science,2013,28(10): 1136-1143.
4 焦其顺,朱忠礼,刘绍民,等.宇宙射线快中子法在农田土壤水分测量中的研究与应用[J].地球科学进展,2013,28(10): 1136-1143.
5 Wang Qiuming, Wang Sheng, Fan Jun. Application of cosmic-ray fast neutron method to measure soil moisture: a case study of Liudaogou basin in Shaanxi[J]. Science of Soil and Water Conservation, 2015, 13(5): 125-131.
5 王秋铭,王胜,樊军.宇宙射线快中子法在土壤水分测量中的应用——以陕北六道沟流域为例[J].中国水土保持科学,2015,13(5):125-131.
6 Pang Zhiguo, Lu Jingxuan, Lu Yizhu, et al. Multi-scale soil moisture product verification analysis based on ground monitoring and remote sensing[J]. Journal of China Institute of Water Resources and Hydropower Research, 2019,17(4):271-278.
6 庞治国,路京选,卢奕竹,等.基于遥感和地面测量的多尺度土壤水分产品验证分析[J].中国水利水电科学研究院学报,2019,17(4):271-278.
7 Tan X Y, Zhang L H, He C S, et al. Applicability of cosmic-ray neutron sensor for measuring soil moisture at the agricul-tural-pastoral ecotone in northwest China [J]. Science China(Earth Sciences), 2020, 63(11): 1730-1744. DOI: 10.1007/s11430-020-9650-2.
doi: 10.1007/s11430-020-9650-2
8 Pang Z, Jia Y H, Peng X H, et al. Applicability of cosmic-ray neutron sensing for measuring soil water content to heterogeneous landscapes under subtropical hydroclimatic conditions[J]. Journal of Hydrology,2021,596: 126068. DOI:10.1016/j.jhydrol.2021.126068.
doi: 10.1016/j.jhydrol.2021.126068
9 Wu Qiang, Xu Qianqian, Zhu Yuhan, et al. Improving calibration and validation of soil moisture measurements using cosmic-ray neutron method based on Linear Depth Weighting[J]. Research of Soil and Water Conservation,2021,28(4):113-120.
9 武强,徐倩倩,朱玉涵,等.基于垂直足迹线性加权算法的宇宙射线中子法土壤水分测量校准与验证[J].水土保持研究,2021,28(4):113-120.
10 Nguyuen H H, Kim H, Choi M. Evaluation of the soil water content using cosmic⁃ray neutron probe in a heterogeneous monsoon climate⁃dominated Region[J]. Advances in Water Resources, 2017, 108:125-138. DOI:10.1016/j.advwatres.2017.07.020.
doi: 10.1016/j.advwatres.2017.07.020
11 Baroni G, Scheiffele L M, Schrön M, et al. Uncertainty, sensitivity and improvements in soil moisture estimation with cosmic-ray neutron sensing[J]. Journal of Hydrology,2018,564:873-887. DOI:10.1016/j.jhydrol.2018.07.053.
doi: 10.1016/j.jhydrol.2018.07.053
12 Fersch B, Francke T, Heistermann M, et al. A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany[J]. Earth System Science Data,2020,12(3):2289-2309. DOI:10.5194/essd-12-2289-2020.
doi: 10.5194/essd-12-2289-2020
13 Mujumdar M, Goswami M M M, Morrison R, et al. A study of field-scale soil moisture variability using the COsmic-ray Soil Moisture Observing System (COSMOS) at IITM Pune site[J]. Journal of Hydrology,2021,597:126102. DOI: 10.1016/j.jhydrol.2021.126102.
doi: 10.1016/j.jhydrol.2021.126102
14 Patrignani A, Tyson E O, Montag B, et al. A Novel lithium foil cosmic-ray neutron detector for measuring field-scale soil moisture[J]. Frontiers in Water,2021,3:67. DOI: 10.3389/frwa.2021.673185.
doi: 10.3389/frwa.2021.673185
15 Zreda M, Shuttleworth W J, Zeng X, et al. COSMOS: The Cosmic-ray soil moisture observing system[J]. Hydrology and Earth System Sciences, 2012, 16(11): 4079-4099. DOI:10.5194/hess-16-4079-2012.
doi: 10.5194/hess-16-4079-2012
16 Baatz R, Bogena H R, Hendricks Franssen H J,et al. An empirical vegetation correction for soil water content quantification using cosmic ray probes[J]. Water Resources Research, 2015, 51(4): 2030-2046. DOI:10.1002/2014WR016443.
doi: 10.1002/2014WR016443
17 Zhao Yuan. Research on small and medium scale soil moisture monitoring method based on Cosmic Ray Neutron Method[D]. Taiyuan: Shanxi University, 2019.
17 赵原.基于宇宙射线中子法的中小尺度土壤水分监测方法研究[D].太原:山西大学,2019.
18 Paloscia P, Pampaloni P. Microwave polarization index for monitoring vegetation growth [J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(5):617-621. DOI: 10.1109/36.7687.
doi: 10.1109/36.7687
19 Zhang Qi, Li Yueqing. Climatic variation of rainfall and rain day in southwest China for last 48 years[J]. Plateau Meteorology, 2014, 33(2): 372-383.
19 张琪,李跃清.近48年西南地区降水量和雨日的气候变化特征[J].高原气象,2014,33(2):372-383.
20 Liang Xuan. Characteristics and controlling factors of hydrochemical variations of soil water in Qingmuguan karst catchment[D]. Chongqing: Southwest University, 2013.
20 梁轩.青木关岩溶流域土壤水水化学变化特征及其控制因素[D].重庆:西南大学,2013.
21 Chen Xuebin. The Simulation of hydrological process in Qingmuguan Karst Underground River, Chongqing, China[D]. Chongqing: Southwest University,2014.陈雪彬.重庆青木关岩溶地下河水文过程模拟[D].重庆:西南大学,2014.
22 Xi Rui, Jiang Yongjun, Wu Jinquan. The COPK model of karst groundwater vulnerability in Qingmuguan Underground River Basin,Chongqing[J]. Geological Review, 2015,61(3):579-586.
22 葸瑞,蒋勇军,吴金权.重庆市青木关地下河流域岩溶水脆弱性评价的COPK模型[J].地质论评,2015,61(3):579-586.
23 Zhan Zhaojun, Chen Feng, Yang Pingheng,et al. Comparison on the hydrogeochemical characteristics of typical karst groundwater system in southwest China, a case of Qingmuguan and Laolongdong in Chongqing[J]. Environmental Science, 2016,37(9):3365-3374.
23 詹兆君,陈峰,杨平恒,等.西南典型岩溶地下河系统水文地球化学特征对比:以重庆市青木关、老龙洞为例[J].环境科学,2016,37(9):3365-3374.
24 Desilets D, Zreda M. Footprint diameter for a cosmic-ray soil moisture probe: theroy and monte carlo simulations[J]. Water Resources Research, 2013, 49(6): 3566-3575. DOI:10.1002/wrcr.20187.
doi: 10.1002/wrcr.20187
25 Franz T E, Zreda M, Ferre T P A, et al. Measurement depth of the cosmic-ray soil moisture probe affected by hydrogen from various sources[J]. Water Resources Research, 2012, 48(8): W08515. DOI:10.1029/2012WR011871.
doi: 10.1029/2012WR011871
26 Desilets D, Zreda M. Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in-situ cosmogenic dating[J], Earth and Planetary Science Letters,2003,206:21–42. DOI: 10.1016/S0012-821X(02)01088-9.
doi: 10.1016/S0012-821X(02)01088-9
27 Wu Qiang, He Kaili, Luo Zizi, et al. Application of Cosmic-ray Neutron Method in soil moisture measurement on complex underlying surface[J]. Chinese Journal of Agrometeorology,2020,41(1):34-42.
27 武强,贺开利,罗孳孳,等.宇宙射线中子法在复杂下垫面土壤水分测量中的应用[J].中国农业气象,2020,41(1):34-42.
28 Rosolem R, Shuttleworth W J, Zreda M, et al.. The effect of atmospheric water vapor on neutron count in the cosmic-ray soil moisture observing system[J]. Journal of Hydrometeorol,2013,14:1659–1671. DOI:10.1175/JHM-D-12-0120.1.
doi: 10.1175/JHM-D-12-0120.1
29 Desilets D, Zreda M, Ferre T P A. Nature’ s neutron probe: land surface hydrology at an elusive scale with cosmic rays[J]. Water Resources Research, 2010, 46(11): W11505. DOI:10.1029/2009WR008726.
doi: 10.1029/2009WR008726
30 Lei Linping. Curve smooth denoising based on Savitzky-Golay algorithm[J]. Computer and Information Technology, 2014, 22(5): 30-31.
30 雷林平.基于Savitzky-Golay算法的曲线平滑去噪[J].电脑与信息技术,2014,22(5):30-31.
31 Cai Jingya. Measuring and verifying soil moisture from scale of pixel in the desert steppe base on cosmic-ray neutron method[D]. Beijing: China Institute of Water Resources and Hydropower Research, 2017.
31 蔡静雅. 基于宇宙射线中子法的荒漠草原像元尺度土壤水分监测与验证[D].北京:中国水利水电科学研究院,2017.
32 Franz T E, Zreda M, Rosolem R, et al. A universal calibration function for determination of soil moisture with cosmic-ray neutrons[J]. Hydrology and Earth System Sciences, 2013,17(168):453-460. DOI: 10.5194/hess-17-453-2013.
doi: 10.5194/hess-17-453-2013
33 Schrön M, Köhli M, Scheiffele L, et al. Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity[J]. Hydrology and Earth System Sciences,2017,21(10):5009-5030. DOI:10.5194/hess-21-5009-2017.
doi: 10.5194/hess-21-5009-2017
[1] 姜涛,郑兴明,李晓洁,李晓峰,赵凯. 闪电河流域L波段地基微波辐射计RFI检测与电磁环境分析[J]. 遥感技术与应用, 2021, 36(5): 1022-1032.
[2] 王皓,郝莹,袁松,陈光舟,靳莉莉. SMAP土壤水分产品在淮河流域的适用性评估[J]. 遥感技术与应用, 2021, 36(5): 1009-1021.
[3] 肖窈,曾超,沈焕锋. 结合参量统计与时空融合的土壤水分降尺度方法[J]. 遥感技术与应用, 2021, 36(5): 1033-1043.
[4] 杨欣源,白晓静. 基于Sentinel-1和MODIS数据反演农田地表土壤水分—以REMEDHUS地区为例[J]. 遥感技术与应用, 2021, 36(5): 973-982.
[5] 杨奥莉,郑东海,文军,陆宣承,杨越,符晴. 青藏高原L波段微波辐射观测与土壤水分反演研究进展[J]. 遥感技术与应用, 2021, 36(5): 983-996.
[6] 孙景霞,张冬有,侯宇初. 基于多源遥感数据协同反演森林地表土壤水分研究[J]. 遥感技术与应用, 2021, 36(3): 564-570.
[7] 王舒,蒋玲梅,王健. 基于多频被动微波遥感的土壤水分反演—以黑河上游为例[J]. 遥感技术与应用, 2020, 35(6): 1414-1425.
[8] 蒋玲梅,崔慧珍,王功雪,杨建卫,王健,潘方博,苏旭,方西瑶. 积雪、土壤冻融与土壤水分遥感监测研究进展[J]. 遥感技术与应用, 2020, 35(6): 1237-1262.
[9] 董磊磊,王维真,吴月茹. 盐渍土介电特性及模型改进研究[J]. 遥感技术与应用, 2020, 35(4): 786-796.
[10] 李雷,郑兴明,赵凯,李晓峰,王广蕊. 基于CCI土壤水分产品的干旱指数精度评价及其对东北地区粮食产量的影响[J]. 遥感技术与应用, 2020, 35(1): 111-119.
[11] 罗家顺,邱建秀,赵天杰,王大刚. 基于Sentinel-1数据的黑河中游土壤水分反演[J]. 遥感技术与应用, 2020, 35(1): 23-32.
[12] 陆峥,韩孟磊,卢麾,彭雪婷,蒙莎莎,刘进,杨晓帆. 基于AMSR2多频亮温的黑河流域中上游土壤水分估算研究[J]. 遥感技术与应用, 2020, 35(1): 33-47.
[13] 胡路,赵天杰,施建成,李尚楠,樊东,王平凯,耿德源,肖青,崔倩,陈德清. 基于地基微波辐射观测的土壤水分反演算法评估[J]. 遥感技术与应用, 2020, 35(1): 74-84.
[14] 陈勇强,杨娜,胡新,佟明远. SMOS与SMAP过境时段表层土壤水分的稳定性研究[J]. 遥感技术与应用, 2020, 35(1): 58-64.
[15] 劳从坤,杨娜,徐少博,汤燕杰,张恒杰. 反演策略对SMOS土壤水分反演算法的影响研究[J]. 遥感技术与应用, 2020, 35(1): 65-73.