Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (1): 1-7    DOI: 10.11873/j.issn.1004-0323.2022.1.0001
青促会十周年专栏     
MRSEI指数的合理性分析及其与RSEI指数的区别
徐涵秋1,2(),邓文慧1,2
1.福州大学环境与资源学院 福州大学遥感信息工程研究所,福建 福州 350116
2.福建省水土流失遥感监测评价重点实验室,福建 福州 350116
Rationality Analysis of MRSEI and Its Difference with RSEI
Hanqiu Xu1,2(),Wenhui Deng1,2
1.College of Environment and Safety Engineering,Institute of Remote Sensing Information Engineering,Fuzhou University,Fuzhou 350116,China
2.Fujian Provincial Key Laboratory of Remote Sensing of Soil Erosion,Fuzhou 350116,China
 全文: PDF(1419 KB)   HTML
摘要:

遥感生态指数(RSEI)自提出以来,已得到广泛的应用。近年来,也有学者对其进行了修改。研究基于主成分变换的机理和应用实例,分析了修改的遥感生态指数(MRSEI)的合理性及其与RSEI的区别。结果表明:MRSEI指数将不具生态含义的第二主成分和第三主成分加入具有明确生态含义的第一主成分进行加权求和计算,其结果不仅降低了第一主成分的占比,无法增加原RSEI的信息量,而且还导致各主成分分量互相干扰,造成MRSEI结果的低估或高估。因此,这一修改缺乏合理性。研究同时还对用户在计算RSEI指数中碰到的一些问题进行分析。RSEI在使用中应注意采用植物生长季节的地表反射率数据;当研究区有大面积水体时,必须对水体进行掩膜;而只有当对生态起正面影响的绿度(NDVI)和湿度(Wet)指标在PC1的载荷为负值时,才必须进行“1 – PC1”的还原运算。

关键词: RSEIMRSEI主成分变换    
Abstract:

The Remote Sensing based Ecological Index (RSEI) has been widely used since its publication and was modified recently. In this paper, the differences between RSEI and the Modified Remote Sensing Ecological Index (MRSEI) are analyzed and compared based on the principle of the principal component analysis and an application case. The results show that the MRSEI index unreasonably adds the second principal component (PC2) and the third principal component (PC3) into the first principal component (PC1), as PC2 and PC3 have no clear ecological meanings. The addition also reduces the weight of PC1. Therefore, the MRSEI does not improve the original RSEI, but reduces the value of RSEI as the added principal component components can cancel each other. Therefore, the modification made in MRSEI lacks rationality. This paper also analyzes and discusses some issues that users encountered in calculating and applying the RSEI index. The RSEI should be calculated using surface reflectance data rather than the top of atmospheric reflectance data or Digital Numbers (DNs). Also, the imagery should be acquired in plant growing seasons. When there is large-area open water in study images, the water must be masked in advance. The "1–PC1" procedure can only be performed when the loadings of the greenness and wetness indicators in PC1 have negative signs.

Key words: RSEI    MRSEI    Principal components transformation
收稿日期: 2021-11-29 出版日期: 2022-04-08
ZTFLH:  TP75  
基金资助: 国家自然科学基金项目(31971639)
作者简介: 徐涵秋(1955-),男,江苏盐城人,教授,主要从事环境资源遥感应用研究。E?mail: hxu@fzu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐涵秋
邓文慧

引用本文:

徐涵秋,邓文慧. MRSEI指数的合理性分析及其与RSEI指数的区别[J]. 遥感技术与应用, 2022, 37(1): 1-7.

Hanqiu Xu,Wenhui Deng. Rationality Analysis of MRSEI and Its Difference with RSEI. Remote Sensing Technology and Application, 2022, 37(1): 1-7.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.1.0001        http://www.rsta.ac.cn/CN/Y2022/V37/I1/1

指标PC1PC2PC3
Wet0.3450.225–0.597
NDVI0.590–0.8070.020
NDBSI–0.362–0.2650.524
LST–0.634–0.477–0.606
特征值0.0850.0140.004
特征值占比/%81.713.43.9
表1  指标主成分分析
图1  主成分分析示意图
图2  雄安新区真彩色影像和PC1、PC2、PC3主分量影像
主分量占比/%均值降低/%
RSEIPC1:1000.677 3
MRSEI1PC1:81.7,PC2:13.4,PC3:3.90.671 2-0.9
MRSEI2PC1:75,PC2:19,PC3:50.662 5-2.2
MRSEI3PC1:65,PC2:27,PC3:70.660 4-2.5
表2  RSEI和MRSEI的比较
1 Xu Hanqiu. A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science, 2013, 33(5): 889-897.
1 徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013, 33(5): 889–897.
2 Xu Hanqiu. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica,2013,33(24):7853-7862.
2 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24): 7853–7862.
3 Zhu D Y, Chen T, Wang Z W,et al. Detecting ecological spatial-temporal changes by Remote Sensing Ecological Index with local adaptability[J]. Journal of Environmental Management,2021,299:113655. DOI:10.1016/j.jenvman.2021. 113655 .
doi: 10.1016/j.jenvman.2021. 113655
4 Saleh S K, Amoushahi S, Gholipour M. Spatiotemporal ecolo-gical quality assessment of metropolitan cities: a case study of central Iran[J]. Environmental Monitoring and Assessment,2021,193(5):305. DOI:10.1007/s10661-021-09082-2 .
doi: 10.1007/s10661-021-09082-2
5 Cheng Zhifeng, He Qisheng. Remote sensing evaluation of the ecological environment of Su-Xi-Chang city group based on Remote Sensing Ecological Index (RSEI)[J]. Remote Sensing Technology and Application, 2019, 34(3):531-539.
5 程志峰, 何祺胜. 基于RSEI的苏锡常城市群生态环境遥感评价[J]. 遥感技术与应用,2019,34(3):531–539.
6 Firozjaei M K, Kiavarz M, Homaee M, et al. A novel method to quantify urban surface ecological poorness zone: a case study of several European cities[J]. Science of The Total Environment,2021,757:143755. DOI:10.1016/j.scitotenv. 2020. 143755 .
doi: 10.1016/j.scitotenv. 2020. 143755
7 Xu H Q, Wang M Y, Shi T T, et al. Prediction of ecological effects of potential population and impervious surface increases using a Remote Sensing based Ecological Index (RSEI)[J]. Ecological Indicators, 2018, 93: 730–740. DOI: 10.1016/j.ecolind.2018.05.055 .
doi: 10.1016/j.ecolind.2018.05.055
8 Yuan B D, Fu L N, Zou Y, et al. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI[J]. Journal of Cleaner Production,2021,302:126995. DOI:10.1016/j.jclepro. 2021. 126995 .
doi: 10.1016/j.jclepro. 2021. 126995
9 Xu H Q, Wang Y F, Guan H D, et al. Detecting ecological changes with a Remote Sensing based Ecological Index (RSEI) produced time series and change vector analysis[J]. Remote Sensing,2019,11(20):2345. DOI:10.3390/rs11202345 .
doi: 10.3390/rs11202345
10 Yang Huiting, Xu Hanqiu. Assessing fractional vegetation cover changes and ecological quality of the Wuyi Mountain National Nature Reserve based on remote sensing spatial information[J]. Chinese Journal of Applied Ecology,2020,31(2): 533-542.
10 杨绘婷, 徐涵秋. 基于遥感空间信息的武夷山国家级自然保护区植被覆盖度变化与生态质量评估[J]. 应用生态学报,2020,31(2):533–542.
11 Jing Y Q, Zhang F, He Y F, et al. Assessment of spatial and temporal variation of ecological environment quality in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China[J]. Ecological Indicators,2020,110:105874. DOI: 10.1016/j.ecolind.2019.105874 .
doi: 10.1016/j.ecolind.2019.105874
12 Qureshi S, Alavipanah S K, Konyushkova M, et al. A remotely sensed assessment of surface ecological change over the Gomishan Wetland, Iran[J]. Remote Sensing, 2020, 12(18): 2989. DOI: 10.3390/rs12182989 .
doi: 10.3390/rs12182989
13 Xu Hanqiu, Zhang Hao. Ecological response to urban expansion in an Island City: Xiamen, Southeastern China[J]. Scientia Geographica Sinica, 2015, 35(7): 867–872.
13 徐涵秋, 张好. 海岛型城市扩展的生态效应分析——以厦门岛为例[J]. 地理科学, 2015, 35(7): 867–872.
14 Liu C, Yang M H, Hou Y T, et al. Spatiotemporal evolution of island ecological quality under different urban densities: a comparative analysis of Xiamen and Kinmen Islands, Southeast China[J]. Ecological Indicators, 2021, 124: 107438. DOI: 10.1016/j.ecolind.2021.107438 .
doi: 10.1016/j.ecolind.2021.107438
15 Jiang Chaoliang, Wu Ling, Liu Dan, et al. Dynamic monitoring of eco-environmental quality in arid desert area by remote sensing: taking the Gurbantunggut Desert China as an example[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 877–883.
15 蒋超亮, 吴玲, 刘丹, 等. 干旱荒漠区生态环境质量遥感动态监测——以古尔班通古特沙漠为例[J]. 应用生态学报, 2019, 30(3): 877–883.
16 Airiken M, Zhang F, Chan N W, et al. Assessment of spatial and temporal ecological environment quality under land use change of urban agglomeration in the North Slope of Tianshan, China[J]. Environmental Science and Pollution Research, 2021. DOI: 10.1007/s11356-021-16579-3 .
doi: 10.1007/s11356-021-16579-3
17 Song Huimin, Xue Liang. Dynamic monitoring and analysis of ecological environment in Weinan City, Northwest China based on RSEI model[J]. Chinese Journal of Applied Ecology, 2016, 27(12): 3913–3919.
17 宋慧敏, 薛亮. 基于遥感生态指数模型的渭南市生态环境质量动态监测与分析[J]. 应用生态学报, 2016, 27(12): 3913–3919.
18 Li Xiaoming, Sun Congjian, Sun Jiulin, et al. Ecological security characteristics of main irrigated agricultural areas on the Loess Plateau based on remote sensing information[J]. Chinese Journal of Applied Ecology, 2021, 32(9): 3177–3184.
18 李晓明, 孙从建, 孙九林, 等. 基于遥感信息的黄土高原主要灌溉农业分布区生态安全特征[J]. 应用生态学报, 2021, 32(9): 3177–3184.
19 Nie X R, Hu Z Q, Zhu Q, et al. Research on temporal and spatial resolution and the driving forces of ecological environment quality in coal mining areas considering topographic correction[J]. Remote Sensing, 2021, 13(14): 2815. DOI: 10.3390/rs13142815 .
doi: 10.3390/rs13142815
20 Song Meijie, Luo Yanyun, Duan Limin. Evaluation of ecological environment in the Xilin Gol Steppe based on modified remote sensing Ecological Index Model[J]. Arid Zone Research, 2019, 36(6): 1521–1527.
20 宋美杰, 罗艳云, 段利民. 基于改进遥感生态指数模型的锡林郭勒草原生态环境评价[J]. 干旱区研究, 2019, 36(6): 1521–1527.
21 Hussain M, Chen D M, Cheng A, et al. Change detection from remotely sensed images: From pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2013,80:91-106. DOI:10.1016/j.isprsjprs. 2013.03.006 .
doi: 10.1016/j.isprsjprs. 2013.03.006
22 van der Meer F D, van der Werff H M A, van Ruitenbeek F J A, et al. Multi- and hyperspectral geologic remote sensing: a review[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 14(1): 112–128. DOI: 10.1016/j.jag.2011.08.002 .
doi: 10.1016/j.jag.2011.08.002
23 Crósta A P, De Souza C R, Azevedo F, et al. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis[J]. International Journal of Remote Sensing, 2003, 24(21): 4233–4240. DOI: 10.1080/0143116031000152291 .
doi: 10.1080/0143116031000152291
24 Kargi H. Principal components analysis for borate mapping[J]. International Journal of Remote Sensing, 2007, 28(7-8): 1805–1817. DOI: 10.1080/01431160600905003 .
doi: 10.1080/01431160600905003
25 Panuju D R, Paull D J, Griffin A L. Change detection techniques based on multispectral images for investigating land cover dynamics[J]. Remote Sensing, 2020, 12(11): 1781. DOI: 10.3390/rs12111781 .
doi: 10.3390/rs12111781
26 Xu H Q. Evaluation of two absolute radiometric normalization algorithms for pre-processing of Landsat imagery[J]. Journal of China University of Geosciences, 2006, 17(2): 146–157. DOI: 10.1016/S1002-0705(06)60020-4 .
doi: 10.1016/S1002-0705(06)60020-4
27 Nong Lanping, Wang Jinliang, Yuanhe Yü.Research on ecological environment quality in central Yunnan based on MRSEI model[J]. Journal of Ecology and Rural Environment,2021, 37(8):972-982.
27 农兰萍, 王金亮, 玉院和. 基于改进型遥感生态指数(MRSEI)模型的滇中地区生态环境质量研究[J]. 生态与农村环境学报,2021,37(8):972-982.
[1] 邓琳,邓明镜,张力树. 高分辨率遥感影像阴影检测与补偿方法优化[J]. 遥感技术与应用, 2015, 30(2): 277-284.
[2] 刘 辉,谢天文. 基于PCA与HIS模型的高分辨率遥感影像阴影检测研究[J]. 遥感技术与应用, 2013, 28(1): 78-84.
[3] 费一清,李永庆. 基于ETM数据的蚀变遥感异常信息提取及成矿区预测研究—以甘肃党河南山地区为例[J]. 遥感技术与应用, 2011, 26(4): 482-488.
[4] 董张玉, 赵萍, 胡文亮. ASTER多光谱影像与资源二号全色影像融合研究[J]. 遥感技术与应用, 2010, 25(1): 143-148.
[5] 方红亮 杨晓梅 杜云艳. 运用主成分变换—逆变换对ADEOS AVNIRXS和PAN进行复合的研究[J]. 遥感技术与应用, 1998, 13(3): 48-53.