Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (1): 108-116    DOI: 10.11873/j.issn.1004-0323.2022.1.0108
青促会十周年专栏     
1980~2018朝鲜半岛西海岸滨海湿地演化分析
王茜1,2(),宋开山1,2,毛德华2(),焉恒琦3,谭晓宇1,2,王宗明2,4
1.吉林师范大学 旅游与地理科学学院,吉林 四平 136000
2.中国科学院东北地理与农业生态研究所,吉林 长春 130102
3.延边大学 地理与海洋科学学院,吉林 延边 133002
4.国家地球系统科学数据中心,北京 100012
Evolution of Coastal Wetlands in the Western Korean Peninsula from 1980 to 2018
Xi Wang1,2(),Kaishan Song1,2,Dehua Mao2(),Hengqi Yan3,Xiaoyu Tan1,2,Zongming Wang2,4
1.School of tourism and geography science of Jilin Normal University,Siping 136000,China
2.Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Changchun 130012,China
3.School of geography and oceanography of Yanbian University,Yanbian 133002,China
4.National Earth System Science Data Center,Beijing 100012
 全文: PDF(2698 KB)   HTML
摘要:

环黄海湿地是东亚—澳大利西亚水鸟迁徙廊道的重要组成部分,在全球生物多样性保护方面具有不可替代的作用。研究利用Landsat 系列遥感影像,集成面向对象和决策树分类方法对遥感影像进行解译,得到1980~2018年5个时期朝鲜半岛西海岸湿地分布数据集,对朝鲜半岛西海岸滨海湿地变化特征进行解析,并对比分析朝鲜和韩国不同体制和发展水平差异下的湿地演变驱动因素,以期为环黄海滨海湿地生态系统管理和可持续发展提供科学参考。研究结果表明:朝鲜半岛西海岸主要湿地类型为自然湿地,占研究区总面积的41.1%,以滩涂为主;近40 a间朝鲜半岛西海岸自然湿地面积呈减少趋势,损失1094.4 km2;人工湿地面积呈快速增加趋势,相对增加45.1%;受国家体制、政治、人口和经济等影响差异,朝鲜自然湿地多转化为耕地,而韩国自然湿地多转化为人工表面;人类活动对湿地的直接占用是该地区湿地损失最主要的因素,需加强管控和科学利用海岸带资源。

关键词: 滨海湿地朝鲜半岛西海岸遥感Landsat驱动因素    
Abstract:

As an important part of the East Asia–Australia Flyway (EAAF), wetlands along the Yellow Sea play important roles in global biodiversity conservation. Here we examined the wetland landscape dynamics and their driving forces in the western Korean Peninsula by Landsat series images for supporting the coastal ecosystem conservation and management and regional sustainable development. Using a method combining object-oriented and decision-tree classification to obtain the multi-temporal wetland datasets from 1980 to 2018 the wetland landscape pattern, the difference in wetland changes and driving forces were compared between North Korea and South Korea. The results revealed that natural wetlands dominate the coastal wetland landscapes in the western Korean Peninsula with 41.1% of the total area of study area. Tidal flat is the main natural wetland type. During the recent four decades, the natural wetland in the western Korean Peninsula experienced a consistent areal decline with the total wetland loss of 1 094.4 km2, while the human-made wetland got a rapid increase in area with a percentage of 45.1%. Due to the differences in national system, politics, population, and economy, most of the natural wetlands in North Korea were converted into cultivated land, while the natural wetlands in South Korea were mainly converted into artificial surface. Human activities are the driving forces of wetland changes in this zone and thus require the improvement in controlling anthropogenic threats and sustainable usage of coastal resources.

Key words: Coastal wetlands    The western Korean Peninsula    Remote sensing    Landsat    Driving forces
收稿日期: 2020-01-20 出版日期: 2022-04-08
ZTFLH:  K903  
基金资助: 国家自然科学基金项目(41771383);吉林省科技发展计划项目(20200301014RQ);中国科学院青年创新促进会(2017277)
通讯作者: 毛德华     E-mail: 13944497061@163.com;maodehua@iga.ac.cn
作者简介: 王茜(1996-),女,吉林四平人,硕士研究生,主要从事资源环境遥感方面的研究。E?mail:13944497061@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王茜
宋开山
毛德华
焉恒琦
谭晓宇
王宗明

引用本文:

王茜,宋开山,毛德华,焉恒琦,谭晓宇,王宗明. 1980~2018朝鲜半岛西海岸滨海湿地演化分析[J]. 遥感技术与应用, 2022, 37(1): 108-116.

Xi Wang,Kaishan Song,Dehua Mao,Hengqi Yan,Xiaoyu Tan,Zongming Wang. Evolution of Coastal Wetlands in the Western Korean Peninsula from 1980 to 2018. Remote Sensing Technology and Application, 2022, 37(1): 108-116.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.1.0108        http://www.rsta.ac.cn/CN/Y2022/V37/I1/108

图1  研究区域地理位置(审图号:GS(2020)4633)
一级类型二级类型特征描述
自然湿地沼泽湿地以喜湿苔草、及禾本科植物为主的天然湿地
河口水域天然线状水体
浅海水域低潮时海平面以下6 m深的近海,包括海湾和海峡
滩涂指沿海大潮高潮位和低潮位之间的潮侵地带
人工湿地海水养殖池指河流入海口附近及海岸线人工修建或利用自然形成的海水养殖水生生物的池塘
水库/坑塘指人工修建形成的蓄水区及常年水位以下的土地
盐田人工修建的洼地,导入海水后蒸发制盐的滩涂
运河/水渠指天然形成或人工开挖的河流及主干渠常年水位以下的土地
人工表面建设用地指建筑用地,如城乡住宅和公共设施用地
交通用地指居民点以外的各种道路及其附属设施和民用机场用地
耕地旱地指无灌溉设施,主要依靠天然降水,种植旱生农作物的耕地
水田可以蓄水,用于种植水稻等水生农作物的田地
林地林地主要用于林业生产地区或天然林区统称为林地
草地草地指生长草本和灌木植物为主并适宜发展畜牧业生产的土地
表1  土地覆被分类系统
图2  技术路线图
图3  朝鲜半岛2018年湿地景观格局特征(审图号:GS(2020)4633)
图4  朝鲜半岛自然湿地和人工湿地面积变化特征
图5  朝鲜半岛各类型自然湿地和人工湿地面积变化特征
图6  朝鲜和韩国自然湿地和人工湿地面积变化对比
年份土地类型朝鲜土地类型韩国土地类型
耕地人工表面人工湿地自然湿地耕地人工表面人工湿地自然湿地
1980~1990耕地5 043.814.87.829.41 869.6208.113.028.4
人工表面9.4134.70.20.615.1327.40.612.6
人工湿地9.90.2185.91.98.64.9107.610.2
自然湿地103.12.410.85 396.7308.197.538.46 051.4
1990~2000耕地5 221.948.826.256.62 234.468.922.020.9
人工表面10.3146.30.20.930.1759.62.47.6
人工湿地28.02.2162.112.78.35.1139.76.7
自然湿地97.83.025.55 315.6128.596.541.35 848.9
2000~2010耕地5 368.019.820.721.82 446.8165.712.420.7
人工表面13.5189.01.91.419.11 002.72.16.9
人工湿地13.00.6194.46.517.413.7193.58.3
自然湿地88.73.935.85 255.961.359.021.05 752.7
2010~2018耕地5 376.324.348.26.52 361.9123.120.627.0
人工表面11.8200.50.61.028.61 182.81.414.2
人工湿地19.51.0227.24.722.34.9189.29.4
自然湿地36.22.313.15 233.025.216.213.65 713.3
表2  朝鲜和韩国1980~2018年湿地与人为用地类型间的转换面积
1 Wang Guodong, Xianguo Lü, Liu Xingtu, et al. Advances in researches on effects of vegetation on surface elevation change in coastal wetland ecosystems[J]. Wetland Science, 2019, 17(3): 261-266.
1 王国栋, 吕宪国, 刘兴土, 等. 植物对滨海湿地地面高程变化的影响研究进展[J]. 湿地科学,2019,17(3): 261-266.
2 Costanza R, Groot R, Sutton P, et al. Changes in the global value of ecosystem services[J]. Global Environmental Change, 2014, 26(1): 152-158.
3 Camacho V, Ruiz-Luna A, Ghermandi A, et al. Effects of land use changes on the ecosystem service values of coastal wetlands[J]. Environmental Management, 2014, 54(4): 852-864.
4 Lu Chunyan, Lei Yifan, Su Ying, et al. Remote sensing analysis of wetland dynamics based on object-oriented and deep learning in the low-elevation coastal aone of Southeast Fujian[J]. Remote Sensing Technology and Application, 2021, 36(4): 713-727.
4 路春燕, 雷依凡, 苏颖, 等. 基于面向对象—深度学习的闽东南低海拔海岸带地区湿地动态遥感分析[J]. 遥感技术与应用, 2021, 36(4): 713-727.
5 Cheng Min, Zhang Liyun, Cui Lijuan, et al. Progress in ecosystem services value valuation of coastal wetlands[J]. Acta Ecologica Sinica, 2016, 36(23): 7509-7518.
5 程敏, 张丽云, 崔丽娟, 等. 滨海湿地生态系统服务及其价值评估研究进展[J]. 生态学报, 2016, 36(23): 7509-7518.
6 Yan Hengqi, Mao Dehua, Zhu Weihong, et al. A comparison of wetland landscape pattern changes of Yalu River Estuary between China and North Korea in recent 40 years[J]. Chinese Jounnal of Ecology, 2021, 40(9): 2883-2894.
6 焉恒琦, 毛德华, 朱卫红, 等. 鸭绿江河口湿地近40年景观格局变化:中朝对比[J]. 生态学杂志, 2021, 40(9): 2883-2894.
7 Chen Kelin, Yong Lü, Wang Lin, et al. Diversity and distribution of waterbirds during spring in wetlands around Huanghai Sea and Bohai Sea in China[J]. Wetland Science, 2019, 17(2):137-145.
7 陈克林, 吕咏, 王琳, 等. 中国环绕黄海和渤海的湿地春季水鸟多样性及其分布[J]. 湿地科学, 2019, 17(2):137-145.
8 Wen Qingke, Zhang Zengxiang, Xu Jinyong, et al. Spatial and temporal of wetlands in Bohai rim during 2000~2008: An analysis based on satellite images[J]. Journal of Remote Sensing, 2011, 15(1): 183-200.
8 温庆可, 张增祥, 徐进勇, 等. 环渤海滨海湿地时空格局变化遥感检测与分析[J]. 遥感学报,2011,15(1):183-200.
9 Liu Hongyu, Xianguo Lü, Liu Zhenqian. Deltaic wetlands in Bohai Sea: resources and development[J]. Journal of Natural Resources, 2001,16(2):101-106.
9 刘红玉, 吕宪国, 刘振乾. 环渤海三角洲湿地资源研究[J]. 自然资源学报, 2001, 16(2):101-106.
10 Wang Hua, Hua Dezheng, Tian Wei, et al. Considerations of local legislation for wetland protection— a case study of regulation for Yellow Sea wetland protection in Yancheng City[J]. Wetland Science & Management, 2019, 15(02): 26-28.
10 王华, 花德政, 田伟, 等. 地方湿地立法保护的思考: 以《盐城市黄海湿地保护条例》起草为例[J]. 湿地科学与管理, 2019,15(2):26-28.
11 Li Yunzhao, Yu Junbao, Han Guangxuan, et al. Dynamic evolution and driving factors of natural wetlands in the Yellow River Delta[J].Chinese Jounnal of Ecology,2011,30(7):1535-1541.
11 栗云召, 于君宝, 韩广轩, 等. 黄河三角洲自然湿地动态演变及其驱动因子[J]. 生态学杂志,2011,30(7): 1535-1541.
12 Jongseo Y, Bong-Oh K, Jungho N, et al. Analysis of forty years long changes in coastal land use and land cover of the Yellow Sea: the gains or losses in ecosystem services [J]. Environmental Pollution, 2018, 241: 74-84.
13 Nicholas J, Robert S, Stuart R, et al. Tracking the rapid loss of tidal wetlands in the Yellow Sea[J]. Research Communications, 2014, 12(5): 267-272.
14 Nicholas J, Stuart R, Robert S, et al. Continental scale mapping of tidal flats across East Asia using the Landsat archive [J]. Remote Sensing, 2012, 4(9): 3417-3426.
15 Nicholas J, Richard A. Protecting stopover habitat for migratory shorebirds in East Asia[J]. Journal of Ornithology, 2015, 156(S1): 217-225.
16 Nicholas J, Ma Z J, Richard A. Tidal flats of theYellow Sea: a review of ecosystem status and anthropogenic threats [J]. Austral Ecology, 2015, 40(4): 472-481.
17 Studds C, Kendall B, Murray N, et al. Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites[J]. Nature Communications, 2017, 8(14895): 1-7.
18 Dong Yulin, Ren Zhibin, Wang Zongming, et al. Spatiotemporal patterns of forest changes in Korean peninsula using landsat images during 1990~2015: A comparative study of two neighboring countries[J]. IEEE Access,2020,8(4):73623-73633.
19 Hou Mengjing, Gao Jinlong, Ge Jing, et al. An analysis of dynamic changes and their driving factors in marsh wetlands in the eastern Qingdao-Tibet Plateau[J]. Acta Prataculturae Sinica, 2020, 29(1): 13-27.
19 侯蒙京, 高金龙, 葛静, 等. 青藏高原东部高寒沼泽湿地动态变化及其驱动因素研究[J]. 草业学报, 2020, 29(1): 13-27.
20 Man Weidong, Li Chunjing, Wang Zonging, et al. Study on dynamic of wetlands landscape in the trans-boundary regions between China and Russia of Ussuri River watershed based on object-oriented classification method[J]. Remote Sensing Technology and Application, 2016, 31(2): 378-387.
20 满卫东, 李春景, 王宗明, 等. 基于面向对象分类方法的乌苏里江流域中俄跨境区域湿地景观动态研究[J]. 遥感技术与应用, 2016, 31(2): 378-387.
21 Song Kaishan, Liu Dianwei, Wang Zongming, et al. Land use change in Sanjiang Plain and its driving forces analysis since 1954[J]. Acta Geographica Sinica, 2008, 63(1): 93-104.
21 宋开山, 刘殿伟, 王宗明, 等. 1954年以来三江平原土地利用变化及驱动力[J]. 地理学报, 2008, 63(1): 93-104.
22 Dehua M, Zongming W, Baojia D, et al. National wetland mapping in China: a new product resulting from objectbased and hierarchical classification of Landsat 8 OLI images [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164: 11-25.
23 Man Weidong, Wang Zongming, Liu Mingyue, et al. Spatio-temporal dynamics analysis of cropland in Northeast China during 1990-2013 based on remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(7): 1-10.
23 满卫东, 王宗明, 刘明月, 等. 1990~2013 年东北地区耕地时空变化遥感分析[J]. 农业工程学报,2016,32(7): 1-10.
24 Yu Hao, Zhang Bai, Wang Zongming, et al. Land cover change and its driving forces in the republic of Korea since the 1990s[J]. Scientia Geographica Sinica, 2017, 37(11): 1755-1763.
24 于皓, 张柏, 王宗明, 等. 1990~2015年韩国土地覆被变化及其驱动因素[J]. 地理科学, 2017, 37(11): 1755-1763.
25 Kong Xianglun, Li Yunlong, Han Mei, et al. Advances in researches on effects of vegetation on surface elevation change in coastal wetland ecosystems[J]. Wetland Science, 2020, 18(5):603-612.
25 孔祥伦, 李云龙, 韩美, 等. 1990年以来3个时期黄河三角洲天然湿地的分布及其变化的驱动因素研究[J]. 湿地科学, 2020,18(5):603-612.
26 Lei Yinru, Cui Lijuan, Li Wei, et al. Impacts of climate change on coastal wetlands in China and countermeasures[J]. Wetland Science & Management,2016,12(2):59-62.
26 雷茵茹, 崔丽娟, 李伟, 等. 气候变化对中国滨海湿地的影响及对策[J]. 湿地科学与管理,2016,12(2):59-62.
27 Zhou Haohao, Du Jia, Ying Nan, et al. Landscape patterns of coastal wetlands in Pearl River delta and their changes for 5 periods since 1980[J]. Wetland Science,2019,17(5):559-566.
27 周昊昊, 杜嘉, 南颖, 等. 1980年以来5个时期珠江三角洲滨海湿地景观格局及其变化特征[J]. 湿地科学,2019,17(5):559-566.
28 Li Nana, Gao Fei, Wei Shengzhao, et al. Natural and social economy driving forces of wetland types changes in Sichuan Province[J]. Acta Ecologica Sinica,2016,40(16):5502-5512.
28 李娜娜, 高飞, 魏圣钊, 等. 四川省湿地类型变化的自然-社会经济驱动力分析[J]. 生态学报, 2020, 40(16): 1-11:5502-5512.
29 Wu Chunguo. Remote Sensing Analysis of Spatial-temporal changes of transboundary wetlands in Tumen River estuary between China, DPR Korea and Russia[D]. Yanbian: Yanbian University,2017.吴春国. 中朝俄图们江跨境湿地时空变化遥感分析[D].延边:延边大学,2017.
30 Dong Yulin, Yu Hao, Wang Zongming, et al. Land cover change of DPRK and its driving forcesfrom 1990 to 2015[J]. Journal of Natural Resources, 2019,34(2):288-300.
30 董禹麟, 于皓, 王宗明, 等. 1990~2015年朝鲜土地覆被变化及驱动力分析[J]. 自然资源学报, 2019,34(2):288-300.
31 Ma Tao, Shao Huanyu. Theoretical progress and practical experiences of coastal wetlands management in other countries[J]. Wetland Science & Management, 2017, 13(1): 61-64.
31 马涛, 邵欢瑜. 国外滨海湿地管理的理论进展和实践经验[J]. 湿地科学与管理, 2017, 13(1): 61-64.
32 Mei Hong. Coastal wetland protection legislation in Korea and its enlightenment[J]. Wetland Science & Management, 2011, 7(4): 52-55.
32 梅宏. 滨海湿地保护: 韩国的立法及启示[J]. 湿地科学与管理, 2011, 7(4): 52-55.
[1] 除多,郑照军,拉巴卓玛,次丹玉珍. 基于Landsat-8 OLI的青藏高原IMS 4 km雪冰产品精度评价[J]. 遥感技术与应用, 2021, 36(6): 1223-1235.
[2] 张欢,李弘毅,李浩杰,车涛. 基于机载LiDAR的高寒山区遥感高程数据精度评估[J]. 遥感技术与应用, 2021, 36(6): 1311-1320.
[3] 尹芳,封凯,吴朦朦,拜得珍,王蕊,周园园,尹春涛,尹翠景,刘磊. 一种基于分段偏最小二乘模型的土壤重金属遥感反演方法[J]. 遥感技术与应用, 2021, 36(6): 1321-1328.
[4] 李杰,贾坤,张宁,魏香琴,王冰. 基于遥感与生态服务模型的青岛市生态保护重要性评价[J]. 遥感技术与应用, 2021, 36(6): 1329-1338.
[5] 陈喆,董庆,陈建平,赵文博,蒋良文,张广泽,冯涛,王栋,毕晓佳,边民,张权平,孟德利. 基于热红外遥感的川藏铁路昌都—林芝段地热异常区定量预测评价研究[J]. 遥感技术与应用, 2021, 36(6): 1368-1378.
[6] 王曦,张怡雯. 基于Landsat影像的北京植被覆盖度变化趋势分析[J]. 遥感技术与应用, 2021, 36(6): 1388-1397.
[7] 梁立锋,谭本华,马咏珊,陈漾漾,刘秀娟. 基于多源地理大数据的城市空间结构研究[J]. 遥感技术与应用, 2021, 36(6): 1446-1456.
[8] 常潇月,荆林海,林沂. 基于机载LiDAR数据和Landsat 8影像的芬兰北部泰加林—苔原过渡带提取[J]. 遥感技术与应用, 2021, 36(6): 1259-1271.
[9] 王昀琛,黄春林,冯娅娅,顾娟. 基于2030可持续发展目标的珠三角土地消耗率与人口增长率协调关系评价[J]. 遥感技术与应用, 2021, 36(5): 1168-1177.
[10] 李益敏,王东驰,刘心知,袁静,赵志芳. 中缅边境典型城市扩张遥感动态监测及驱动力分析[J]. 遥感技术与应用, 2021, 36(5): 1155-1167.
[11] 魏雪馨,刘洋,闵庆文,刘荣高,张清洋,叶晓星,刘蓓蓓. 基于地物光谱季节曲线特征的毛竹林分布提取[J]. 遥感技术与应用, 2021, 36(5): 1178-1188.
[12] 杨奥莉,郑东海,文军,陆宣承,杨越,符晴. 青藏高原L波段微波辐射观测与土壤水分反演研究进展[J]. 遥感技术与应用, 2021, 36(5): 983-996.
[13] 罗玲,毛德华,张柏,王宗明,杨桄. 芦苇湿地植被NPP估算方法探索与应用[J]. 遥感技术与应用, 2021, 36(4): 742-750.
[14] 陈康明,朱旭东. 基于Google Earth Engine的南方滨海盐沼植被时空演变特征分析[J]. 遥感技术与应用, 2021, 36(4): 751-759.
[15] 姚杰鹏,杨磊库,陈探,宋春桥. 基于Sentinel-1,2和Landsat 8时序影像的鄱阳湖湿地连续变化监测研究[J]. 遥感技术与应用, 2021, 36(4): 760-776.