閬ユ劅鎶�鏈笌搴旂敤 鈥衡�� 2022, Vol. 37 鈥衡�� Issue (1): 117-124.DOI: 10.11873/j.issn.1004-0323.2022.1.0117

鈥� 闈掍績浼氬崄鍛ㄥ勾涓撴爮 鈥� 涓婁竴绡�    涓嬩竴绡�

鍩轰簬椋庝簯涓夊彿鍗槦寰尝鎴愬儚浠娴嬬殑鍏ㄧ悆娴锋皵鐣岄潰娼滅儹閫氶噺閬ユ劅

瀹夊┓鐜�1,2(),鏄撴3,鏉ㄦ檽宄�1(),娈锋檽鏂�4   

  1. 1.涓浗绉戝闄㈢┖澶╀俊鎭垱鏂扮爺绌堕櫌锛岄仴鎰熺瀛﹀浗瀹堕噸鐐瑰疄楠屽锛屽寳浜� 100101
    2.涓浗绉戝闄㈠ぇ瀛︼紝鍖椾含 100049
    3.涓浗浜烘皯瑙f斁鍐�61741閮ㄩ槦锛屽寳浜� 100094
    4.涓浗娴锋磱澶у淇℃伅绉戝涓庡伐绋嬪閮ㄦ捣娲嬫妧鏈闄紝灞变笢 闈掑矝 266003
  • 鏀剁鏃ユ湡:2021-02-03 淇洖鏃ユ湡:2021-12-15 鍑虹増鏃ユ湡:2022-02-20 鍙戝竷鏃ユ湡:2022-04-08
  • 閫氳浣滆��: 鏉ㄦ檽宄�
  • 浣滆�呯畝浠�:瀹夊┓鐜夛紙1996-锛夛紝濂筹紝娌冲崡閮戝窞浜猴紝纭曞+鐮旂┒鐢燂紝涓昏浠庝簨娴锋磱閬ユ劅銆侲?mail: anty@radi.ac.cn
  • 鍩洪噾璧勫姪:
    涓闄㈡垬鐣ユ�у厛瀵间笓椤硅棰樷�滃叏鐞冩捣娲嬬幆澧冨熀纭�鏁版嵁搴撲笌杩囩▼浜や簰绯荤粺鈥�(XDA19060100)

Remote Sensing of Global Air-Sea Latent Heat Fluxes from FY-3 Microwave Radiation Imager Observations

Tingyu An1,2(),Xin Yi3,Xiaofeng Yang1(),Xiaobin Yin4   

  1. 1.The Key Laboratory of Remote Sensing Science锛孉erospace Information Research Institute锛孋hinese Academy of Sciences锛孊eijing 100101锛孋hina
    2.University of Chinese Academy of Sciences锛孊eijing 100049锛孋hina
    3.61741 Troops of PLA锛孊eijing 100094锛孋hina
    4.Ocean University of China锛孎aculty of Information Science and Engineering锛孋ollege of Marine Technology锛孮ingdao 266003锛孋hina
  • Received:2021-02-03 Revised:2021-12-15 Online:2022-02-20 Published:2022-04-08
  • Contact: Xiaofeng Yang

鎽樿锛�

娴锋皵鐣岄潰娼滅儹閫氶噺鏄 閲忔捣姘旈棿鑳介噺鍜屾按姹戒氦鎹㈢殑閲嶈鎸囨爣銆傜儹閫氶噺鍗槦閬ユ劅浜у搧鍏锋湁瑕嗙洊闈㈠箍銆佹椂鏁堟�ч珮鐨勪紭鍔匡紝浣嗕篃瀛樺湪瑙傛祴闈炲悓姝ャ�佹綔鐑�氶噺绮惧害杈冧綆鐨勯棶棰樸�傜敱浜庤繎琛ㄩ潰绌烘皵姣旀箍搴︽槸娼滅儹閫氶噺鍗槦閬ユ劅鐨勯噸瑕佽宸簮锛屽熀浜庨浜戜笁鍙峰崼鏄熷井娉㈡垚鍍忎华瑙傛祴鏁版嵁锛岀爺绌跺绌烘皵姣旀箍搴﹀弽婕旂畻娉曡繘琛屼簡鏀硅繘锛屾敼杩涘悗鐨勭畻娉曚笌鐜板満瀹炴祴鏁版嵁鐩告瘮锛屽弽婕旂簿搴︽湁鏄庢樉鐨勬彁楂樸�傞拡瀵规瀬杞ㄦ皵璞″崼鏄熻繃澧冩椂闂寸浉瀵瑰浐瀹氱殑闂锛屼娇鐢ㄧ幇鍦鸿娴嬫暟鎹垎鏋愪簡娼滅儹閫氶噺鏃ュ唴鍙樺寲杩囩▼骞跺缓绔嬩簡鏃ュ潎娼滅儹閫氶噺浼扮畻妯″瀷锛屽埄鐢ㄩ浜戜笁鍙峰井娉㈡垚鍍忎华鏁版嵁锛岄�氳繃鍧椾綋娉曡绠椾簡鍏ㄧ悆娴锋磱娼滅儹閫氶噺銆備笌鐜板満瀹炴祴鏁版嵁鐩告瘮锛屽叾鍋忓樊銆佸潎鏂规牴璇樊鍜岀浉鍏崇郴鏁板垎鍒负3.50 W/m2銆�32.96 W/m2鍜�0.79銆�

鍏抽敭璇�: 娼滅儹閫氶噺, 寰尝鎴愬儚浠�, 椋庝簯涓夊彿, 绌烘皵姣旀箍搴�

Abstract:

The Latent Heat Flux锛圠HF锛� is an essential indicator for measuring energy and water vapor exchange between the air and sea. Satellite-based surface turbulent fluxes are widely used due to their wide coverage and high timeliness advantages. However锛� there are still problems with non-synchronous observations and low accuracy of latent heat flux estimation. Since the sea surface air specific humidity is the primary error source in satellite remote sensing of latent heat flux锛� the air specific humidity retrieval algorithm is improved based on the Fengyun-3 Micro-Wave Radiation Imager锛圡WRI锛� data. Compared with the in-situ measurements from moored buoys锛� the inversion results have been significantly improved. In view of satellite鈥檚 relatively fixed overpassing time of satellites锛� the intraday variation process of latent heat flux is analyzed using the in situ data. Then a daily average latent heat flux estimation model is established. The Fengyun-3/MWRI data are used to calculate the global air-sea latent heat flux by the COARE3.6 algorithm. The bias锛� Root Mean Square Difference锛圧MSD锛夛紝 and correlation coefficient锛�R2锛� between satellite and buoy are 3.50 W/m2锛� 32.96 W/m2锛� and 0.79.

Key words: Latent Heat Flux, MWRI, FY-3D, Specific Air Humidity

涓浘鍒嗙被鍙�: