1 | Mohammed G H锛� Colombo R锛� Middleton E M锛宔t al. Remote sensing of Solar-Induced Chlorophyll Fluorescence 锛圫IF锛� in vegetation锛� 50 years of progress锛籎锛�.Remote Sensing of Environment锛�2019锛�231锛�111177. DOI锛�10.1016/j.rse.2019.04.030 . |
2 | Baker N R. Chlorophyll fluorescence锛� A probe of photosynthesis in vivo锛籎锛�.Annual Review Plant Biology锛�2008锛� 59锛� 89-113. DOI锛�10.1146/ annurev. implant.59.032607.092759 . |
3 | Xiao J锛� Chevallier F锛� Gomez C锛宔t al. Remote sensing of the terrestrial carbon cycle锛� A review of advances over 50 years锛籎锛�. Remote Sensing of Environment锛�2019锛�233锛�111383. DOI锛�10.1016/j.rse.2019.111383 . |
4 | Zhang Zhaoying锛� Wang Songhan锛� Qiu Bo锛宔t al.Retrieval of Sun-Induced chlorophyll Fluorescence and advancements in carbon cycle application锛籎锛�. Journal of Remote Sensing锛�2019锛� 23锛�1锛夛細37-52. |
4 | 绔犻拪棰栵紝鐜嬫澗瀵掞紝閭卞崥锛岀瓑.鏃ュ厜璇卞鍙剁豢绱犺崸鍏夐仴鎰熷弽婕斿強纰冲惊鐜簲鐢ㄨ繘灞曪蓟J锛�.閬ユ劅瀛︽姤锛�2019锛�23锛�1锛夛細37-52. |
5 | Xiao J锛� Fisher J B锛� Hashimoto H锛宔t al. Emerging satellite observations for diurnal cycling of ecosystem processes锛籎锛�.Nature Plants锛�2021锛� 7锛�7锛夛細 877-887. DOI锛�10.1038/s41477-021-00952-8 . |
6 | Frankenberg C锛� Fisher J B锛� Worden J锛宔t al. New global observations of the terrestrial carbon cycle from GOSAT锛� Patterns of plant fluorescence with gross primary productivity锛籎锛�. Geophysical Research Letters锛�2011锛� 38锛�17锛夛細 351-365. DOI锛� 10.1029/2011GL048738 . |
7 | Joiner J锛� Yoshida Y锛� Vasilkov A P锛宔t al. First observations of global and seasonal terrestrial chlorophyll fluorescence from space锛籎锛�.Biogeosciences锛�2011锛�8锛�3锛夛細637-651. DOI锛�10.5194/ bg-8-637-2011 . |
8 | Guanter L锛� Zhang Y锛� Jung M锛宔t al. Global and time-resolved mo-nitoring of crop photosynthesis with chlorophyll fluorescence锛籎锛�. Proceedings of the National Academy of Sciences锛�2014锛�111锛�14锛夛細E1327-E1333. DOI锛�10.1073/pnas. 1320008111 . |
9 | Wang Ya'nan锛� Wei Jin锛� Tang Xuguang锛� et al.Progress of using the Chlorophyll Fluorescence to estimate terrestrial gross primary production锛籎锛�.Remote Sensing Technology and Application锛�2020锛�35锛�5锛夛細975-989. |
9 | 鐜嬮泤妤狅紝闊︾懢锛屾堡鏃厜锛岀瓑. 搴旂敤鍙剁豢绱犺崸鍏変及绠楁琚�诲垵绾х敓浜у姏鐮旂┒杩涘睍锛籎锛�.閬ユ劅鎶�鏈笌搴旂敤锛�2020锛�35锛�5锛夛細975-989. |
10 | Liu J锛� Bowman K W锛� Schimel D S锛宔t al. Contrasting carbon cycle responses of the tropical continents to the 2015-2016 El Nino锛籎锛�.Science锛�2017锛� 358锛�6360锛夛細5690. DOI锛�10.1126/science.aam5690 . |
11 | Parazoo N C锛� Bowman K锛� Frankenberg C锛宔t al. Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO2 and chlorophyll fluorescence from GOSAT锛籎锛�.Geophysical Research Letters锛�2013锛� 40锛�11锛夛細 2829-2833. DOI锛�10.1002/grl.50452 . |
12 | Wang S锛� Huang C锛� Zhang L锛宔t al. Monitoring and assessing the 2012 drought in the great plains锛� analyzing satellite-retrieved Solar-Induced Chlorophyll Fluorescence锛� drought indices锛宎nd gross primary production锛籎锛�.Remote Sensing锛�2016锛� 8锛�2锛夛細61. DOI锛�10.3390/rs8020061 . |
13 | Jonard F锛� De Canni猫re S锛� Br眉ggemann N锛宔t al. Value of Sun-Induced Chlorophyll Fluorescence for quantifying hydrological states and fluxes锛� current status and challenges锛籎锛�.Agricultural and Forest Meteorology锛�2020锛� 291锛� 108088. DOI锛�10.1016/j.agrformet.2020.108088 . |
14 | Zhang Y锛� Commane R锛� Zhou S锛宔t al. Light limitation regulates the response of autumn terrestrial carbon uptake to warming锛籎锛�.Nature Climate Change锛�2020锛� 10锛�8锛夛細 739-743. DOI锛�10.1038/s41558-020-0806-0 . |
15 | Zhang Y锛� Joiner J锛� Alemohammad S H锛宔t al. A global spatially Contiguous Solar-Induced Fluorescence 锛圕SIF锛� dataset using neural networks锛籎锛�.Biogeosciences锛�2018锛� 15锛�19锛夛細 5779-5800. DOI锛�10.5194/bg-15-5779-2018 . |
16 | Li X& Xiao J. A global锛� 0.05-degree product of Solar-Induced Chlorophyll Fluorescence derived from OCO-2锛� MODIS锛� and reanalysis data锛籎锛�.Remote Sensing锛�2019锛� 11锛�5锛夛細517. DOI锛�10.3390/rs11050517 . |
17 | Yu L锛� Wen J锛� Chang C Y锛宔t al. High-resolution global contiguous SIF of OCO-2锛籎锛�.Geophysical Research Letters锛�2019锛� 46锛�3锛夛細 1449-1458. DOI锛�10.1029/2018gl081109 . |
18 | Duveiller G& Cescatti A. Spatially downscaling Sun-Induced Chlorophyll Fluorescence leads to an improved temporal correlation with gross primary productivity锛籎锛�.Remote Sensing of Environment锛�2016锛�182锛�72-89. DOI锛�10.1016/j.rse.2016. 04.027 . |
19 | Duveiller G锛� Filipponi F锛� Walther S锛宔t al. A spatially downscaled Sun-Induced Fluorescence global product for enhanced monitoring of vegetation productivity锛籎锛�.Earth System Science Data锛�2020锛� 12锛�2锛夛細 1101-1116. DOI锛�10.5194/essd-12-1101-2020 . |
20 | Wen J锛� K?hler P锛� Duveiller G锛宔t al. A framework for harmonizing multiple satellite instruments to generate a long-term global high spatial-resolution Solar-Induced Chlorophyll Fluorescence 锛圫IF锛夛蓟J锛�.Remote Sensing of Environment锛�2020锛� 239锛�111644. DOI锛�10.1016/j.rse.2020.111644 . |
21 | Li X锛� Xiao J. Mapping photosynthesis solely from Solar-Induced Chlorophyll Fluorescence锛� A global锛� fine-resolution dataset of gross primary production derived from OCO-2锛籎锛�.Remote Sensing锛�2019锛� 11锛�21锛�. DOI锛�10.3390/rs11212563 . |
22 | Li X锛� Xiao J. Global climatic controls on interannual variability of ecosystem productivity锛� similarities and differences inferred from Solar-Induced Chlorophyll Fluorescence and enhanced vegetation index锛籎锛�.Agricultural Forest Meteorology锛�2020锛�288-289锛�108018. DOI锛�10.1016/j.agrformet.2020. 108018 . |
23 | Gang C锛� Pan S锛� Tian H锛宔t al. Satellite observations of forest resilience to hurricanes along the northern Gulf of Mexico锛籎锛�.Forest Ecology and Management锛�2020锛� 472锛�118243. DOI锛�10.1016/j.foreco.2020.118243 . |
24 | Li C锛� Sun G锛� Cohen E锛宔t al. Modeling the impacts of urbanization on watershed-scale gross primary productivity and tradeoffs with water yield across the conterminous United States锛籎锛�. Journal of Hydrology锛�2020锛�583锛�124581. DOI锛�10.1016/j.jhydrol.2020.124581 . |
25 | Wei J锛� Tang X锛� Gu Q锛宔t al. Using Solar-Induced Chlorophyll Fluorescence observed by OCO-2 to predict autumn crop production in China锛籎锛�.Remote Sensing锛�2019锛� 11锛�14锛夛細 1715. DOI锛� 10.3390/rs11141715 . |
26 | Cao J锛� Zhang Z锛� Tao F锛宔t al. Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches锛籎锛�.Agricultural and Forest Meteorology锛�2021锛�297锛�108275. DOI锛�10.1016/j.agrformet. 2020.108275 . |
27 | Zhao Z锛� Wang K. Capability of existing drought indices in reflecting agricultural crought in China锛籎锛�.Journal of Geophysical Research锛� Biogeosciences锛�2021锛� 126锛�8锛夛細 DOI锛� 10.1029/2020jg006064. |
28 | Zhang Z锛� Xu W锛� Qin Q锛宔t al. Downscaling Solar-Induced Chlorophyll Fluorescence based on convolutional neural network method to monitor agricultural drought锛籎锛�.IEEE Transactions on Geoscience and Remote Sensing锛�2021锛� 59锛�2锛夛細 1012-1028. DOI锛� 10.1109/tgrs.2020.2999371 . |
29 | Sun Y锛� Frankenberg C锛� Jung M锛宔t al. Overview of Solar-Induced chlorophyll Fluorescence 锛圫IF锛� from the orbiting carbon observatory-2锛� retrieval锛� cross-mission comparison锛� and global monitoring for GPP锛籎锛�.Remote Sensing of Environment锛�2018锛� 209锛� 808-823. DOI锛� 10.1016/j.rse.2018.02.016 . |
30 | Joiner J锛� Gaunter L锛� Lindstrot R锛宔t al. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements锛� methodology锛� simulations锛� and application to GOME-2锛籎锛�.Atmospheric Measurement Techniques锛�2013锛� 6锛�10锛夛細 2803-2823. DOI锛� 10.5194/amt-6-2803-2013 . |
31 | K?hler P锛� Guanter L& Joiner J. A linear method for the retrieval of Sun-Induced Chlorophyll Fluorescence from GOME-2 and SCIAMACHY data锛籎锛�.Atmospheric Measurement Techniques锛�2015锛� 8锛�6锛夛細 2589-2608. DOI锛� 10.5194/amt-8-2589-2015 . |
32 | Zhang Y锛� Zhang Q锛� Liu L锛宔t al. ChinaSpec锛� a network for long-term ground-based measurements of Solar-Induced Fluorescence in China锛籎锛�.Journal of Geophysical Research锛� Biogeosciences锛�2021锛� 126锛�3锛夛細 e2020JG006042. DOI锛� 10.1029/2020jg006042 . |
33 | Friedl M A锛� Sulla-Menashe D锛� Tan B锛宔t al. MODIS Collection 5 global land cover锛� algorithm refinements and characterization of new datasets锛籎锛�.Remote Sensing of Environment锛�2010锛� 114锛�1锛夛細 168-182. DOI锛� 10.1016/j.rse.2009.08.016 . |
34 | Sulla-Menashe D锛� Gray J M锛� Abercrombie S P锛宔t al. Hierarchical mapping of annual global land cover 2001 to present锛� the MODIS collection 6 land cover product锛籎锛�.Remote Sens. Environ锛�2019锛�222锛�183-194. DOI锛�10.1016/j.rse.2018.12.013 . |
35 | Piao S锛� Fang J锛� Ciais P锛宔t al. The carbon balance of terrestrial ecosystems in China锛籎锛�. Nature锛�2009锛� 458锛�7241锛夛細 1009-1013. DOI锛� 10.1038/nature07944 . |
36 | Zhang Y锛� Zhang Q锛� Liu L锛宔t al.ChinaSpec锛欰 network for long-term ground-based measurements of Solar-Induced Fluorescence in China锛籎锛�. Journal of Geophysical Research锛� Biogeosciences锛�2021锛�126锛�3锛夛細6042. DOI锛�10.1029/2020jg006042 . |
37 | Porcar-Castell A锛� Mac Arthur A锛� Rossini M锛宔t al. EUROSPEC锛� at the interface between remote-sensing and ecosystem CO2 flux measurements in Europe锛籎锛�.Biogeosciences锛�2015锛� 12锛�20锛夛細 6103-6124. DOI锛� 10.5194/bg-12-6103-2015 . |
38 | Ji Menghao锛� Tang Bohui锛� Li Zhaoliang. Review of Solar induced Chlorophyll Fluorescence retrieval methods from satellite data锛籎锛�. Remote Sensing Technology and Application锛�2019锛�34锛�3锛夛細455-466. |
38 | 绾ⅵ璞紝 鍞愪集鎯狅紝 鏉庡彫鑹�. 澶槼璇卞鍙剁豢绱犺崸鍏夌殑鍗槦閬ユ劅鍙嶆紨鏂规硶鐮旂┒杩涘睍锛籎锛�.閬ユ劅鎶�鏈笌搴旂敤锛�2019锛� 34锛�3锛夛細 455-466. |
39 | Zhang Y锛� Song C锛� Band L E锛宔t al. Reanalysis of global terrestrial vegetation trends from MODIS products锛� browning or greening锛燂蓟J锛�.Remote Sensing of Environment锛�2017锛� 191锛� 145-155. DOI锛� 10.1016/j.rse.2016.12.018 . |
40 | Zhu Z锛� Piao S锛� Myneni R B锛宔t al. Greening of the earth and its drivers锛籎锛�.Nature Climate Change锛�2016锛� 6锛�8锛夛細 791-795. DOI锛� 10.1038/nclimate3004 . |
41 | Chen C锛� Park T锛� Wang X锛宔t al. China and India lead in greening of the world through land-use management锛籎锛�.Nature Sustainability锛�2019锛� 2锛� 122-129. DOI锛� 10.1038/s41893-019-0220-7 . |
42 | Joiner J锛� Yoshida Y锛� Guanter L锛宔t al. New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments锛� simulations and application to GOME-2 and SCIAMACHY锛籎锛�.Copernicus Publications锛�2016锛� 9锛�8锛�. DOI锛� 10.5194/amt-9-3939-2016 . |
43 | Zhang Y锛� Joiner J锛� Gentine P锛宔t al. Reduced Solar-Induced Chlorophyll Fluorescence from GOME-2 during Amazon drought caused by dataset artifacts锛籎锛�.Global Change Biology锛�2018锛� 24锛�6锛夛細 2229-2230. DOI锛� 10.1111/gcb.14134 . |