Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (1): 125-136    DOI: 10.11873/j.issn.1004-0323.2022.1.0125
青促会十周年专栏     
多源日光诱导叶绿素荧光产品在中国地区的一致性研究
杨凤珠1(),王震山1,张乾2,孙善磊3,柳艺博1()
1.南京信息工程大学 应用气象学院/江苏省农业气象重点实验室/生态研究院,江苏 南京 210044
2.南京大学 国际地球系统科学研究所,江苏 南京 210023
3.南京信息工程大学 大气科学学院,江苏 南京 210044
Consistency Analysis of Five Global Sun-Induced Chlorophyll Fluorescence (SIF) Products over China
Fengzhu Yang1(),Zhenshan Wang1,Qian Zhang2,Shanlei Sun3,Yibo Liu1()
1.School of Applied Meteorology,Nanjing University of Information Science and Technology/Jiangsu Laboratory of Agricultural Meteorology,Nanjing 210044,China
2.International Institute for Earth System Science,Nanjing University,Nanjing 210023,China
3.School of Atmospheric Science,Nanjing University of Information Science and Technology,Nanjing 210044,China
 全文: PDF(7262 KB)  
摘要:

日光诱导叶绿素荧光(Sun-Induced Chlorophyll Fluorescence, SIF)是表征植被光合的有效探针。基于不同卫星遥感衍生的各种SIF产品已被广泛应用,然而,不同产品在中国区域表现及一致性仍不明晰。以中国生态系统光谱观测网络(ChinaSpec)农田站SIF观测数据为参考评估CSIF、GOSIF、SIFoco2-005、SIFLUE(SIFLUE_JJ/SIFLUE_PK)、SIF005等产品,并从不同时空尺度探讨它们的一致性。结果表明:①不同产品在4个农田站表现不尽相同,3个农田站存在高估现象。SIFLUE整体表现较好,GOSIF次之,而后是SIF005和SIFoco2_005。②各产品空间格局具有较高一致性,但其幅度存在差异:年均值方面,SIFLUE_PK最大(0.21 W m-2 μm-1 sr-1),CSIF最小(0.08 W m-2 μm-1 sr-1),SIF005、SIFoco2_005、SIFLUE_JJ、GOSIF依次分别为0.17、0.15、0.13和0.11 W m-2 μm-1 sr-1;年最大值方面,SIFLUE_PK最大(0.48 W m-2 μm-1 sr-1),SIFLUE_JJ最小(0.30 W m-2 μm-1 sr-1),SIF005、SIFoco2_005、GOSIF、CSIF依次分别为0.44、0.36、0.33和0.31 W m-2 μm-1 sr-1。③2008~2016年间SIF年均值变化趋势方面,GOSIF和CSIF整体呈显著升高的趋势(显著升高区域分别占23.6%和18.6%),全国均值升高速率分别为1.58×10-3和1.23×10-3 W m-2 μm-1 sr-1 a-1;而SIFLUE_PK和SIF005整体呈显著下降趋势(显著下降区域分别占16.3%和14.7%),全国均值下降速率分别为3.62×10-3和1.39×10-3 W m-2 μm-1 sr-1 a-1;SIFLUE_JJ在全国区域整体变化趋势不明显。④2008~2016年间SIF年最大值变化趋势与SIF年均值类似:CSIF和GOSIF整体呈显著升高(显著升高区域分别占10.1%和9.9%),全国均值增速分别为2.89×10-3和2.15×10-3 W m-2 μm-1 sr-1 a-1;SIFLUE_PK和SIF005整体显著下降(显著下降区域分别占16.9%和22.3%),全国均值下降速率分别为7.96×10-3和8.09×10-3 W m-2 μm-1 sr-1 a-1;SIFLUE_JJ在全国区域整体变化趋势亦不明显。

关键词: 日光诱导叶绿素荧光ChinaSpec卫星遥感中国一致性    
Abstract:

Sun-Induced Chlorophyll Fluorescence (SIF) is an effective probe characterizing vegetation photosynthesis. Various global SIF satellite remote sensing products have been derived and widely used. However, the performance and consistency of different products in China are still unclear. CSIF, GOSIF, SIFoco2-005, SIFLUE (SIFLUE_JJ/SIFLUE_PK), and SIF005 were validated using the ground observations of four farmland sites from ChinaSpec, and their consistency was analyzed. Results showed that: (1) The performance of different products is different in different places and overestimation occurred in three farm stations. SIFLUE performs well as a whole, followed by GOSIF, SIF005 and SIFoco2_005. (2) The spatial pattern of the annual mean SIF and annual maximum SIF in 2016 based on different products is highly consistent, but with different magnitude. The national averaged value of annual mean SIF for SIFLUE_PK, SIF005, SIFoco2_005, SIFLUE_JJ, GOSIF andCSIF is 0.21, 0.17, 0.15, 0.13, 0.11 and 0.08 W m-2 μm-1 sr-1, respectively. The national averaged value of annual maximum SIF for SIFLUE_PK, SIF005, SIFoco2_005, GOSIF, CSIF and SIFLUE_JJ is 0.48, 0.44, 0.36, 0.33, 0.31, and 0.30 W m-2 μm-1 sr-1, respectively. (3) The annual mean value of GOSIF/CSIF and SIFLUE_PK/SIF005 significantly increased and decreased in 23.6%/18.6% and 16.3%/14.7% areas respectively from 2008 to 2016. The national averaged trends of GOSIF, CSIF, SIFLUE_PK, and SIF005 is 0.001 6, 0.001 2, -0.003 6, and -0.001 4 W m-2 μm-1 sr-1 a-1, respectively. SIFLUE_JJ showed no significant change. (4) The annual maximum value of CSIF/GOSIF and SIFLUE_PK/SIF005 significantly increased and decreased in 10.1%/9.9% and 16.9%/22.3% areas respectively during the period of 2008 to 2016. The national averaged trends of GOSIF, CSIF, SIFLUE_PK, and SIF005 is 0.002 9, 0.002 2, -0.008 0, and -0.008 1 W m-2 μm-1 sr-1 a-1, respectively. SIFLUE_JJ showed no significant change.

Key words: Sun-Induced Chlorophyll Fluorescence    ChinaSpec    Satellite remote sensing    China    consistency
收稿日期: 2021-10-09 出版日期: 2022-04-08
ZTFLH:  TD75  
基金资助: 国家自然科学基金项目(42130506);江苏省农业气象重点实验室基金(JKLAM2001)
通讯作者: 柳艺博     E-mail: fengzhuyang@126.com;yiboliu@nuist.edu.cn
作者简介: 杨凤珠(1996-),女,山东菏泽人,硕士研究生,主要从事应用气象方面的研究。E?mail:fengzhuyang@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨凤珠
王震山
张乾
孙善磊
柳艺博

引用本文:

杨凤珠,王震山,张乾,孙善磊,柳艺博. 多源日光诱导叶绿素荧光产品在中国地区的一致性研究[J]. 遥感技术与应用, 2022, 37(1): 125-136.

Fengzhu Yang,Zhenshan Wang,Qian Zhang,Shanlei Sun,Yibo Liu. Consistency Analysis of Five Global Sun-Induced Chlorophyll Fluorescence (SIF) Products over China. Remote Sensing Technology and Application, 2022, 37(1): 125-136.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.1.0125        http://www.rsta.ac.cn/CN/Y2022/V37/I1/125

1 Mohammed G H, Colombo R, Middleton E M,et al. Remote sensing of Solar-Induced Chlorophyll Fluorescence (SIF) in vegetation: 50 years of progress[J].Remote Sensing of Environment,2019,231:111177. DOI:10.1016/j.rse.2019.04.030 .
doi: 10.1016/j.rse.2019.04.030
2 Baker N R. Chlorophyll fluorescence: A probe of photosynthesis in vivo[J].Annual Review Plant Biology,2008, 59: 89-113. DOI:10.1146/ annurev. implant.59.032607.092759 .
doi: 10.1146/ annurev. implant.59.032607.092759
3 Xiao J, Chevallier F, Gomez C,et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years[J]. Remote Sensing of Environment,2019,233:111383. DOI:10.1016/j.rse.2019.111383 .
doi: 10.1016/j.rse.2019.111383
4 Zhang Zhaoying, Wang Songhan, Qiu Bo,et al.Retrieval of Sun-Induced chlorophyll Fluorescence and advancements in carbon cycle application[J]. Journal of Remote Sensing,2019, 23(1):37-52.
4 章钊颖,王松寒,邱博,等.日光诱导叶绿素荧光遥感反演及碳循环应用进展[J].遥感学报,2019,23(1):37-52.
5 Xiao J, Fisher J B, Hashimoto H,et al. Emerging satellite observations for diurnal cycling of ecosystem processes[J].Nature Plants,2021, 7(7): 877-887. DOI:10.1038/s41477-021-00952-8 .
doi: 10.1038/s41477-021-00952-8
6 Frankenberg C, Fisher J B, Worden J,et al. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity[J]. Geophysical Research Letters,2011, 38(17): 351-365. DOI: 10.1029/2011GL048738 .
doi: 10.1029/2011GL048738
7 Joiner J, Yoshida Y, Vasilkov A P,et al. First observations of global and seasonal terrestrial chlorophyll fluorescence from space[J].Biogeosciences,2011,8(3):637-651. DOI:10.5194/ bg-8-637-2011 .
doi: 10.5194/ bg-8-637-2011
8 Guanter L, Zhang Y, Jung M,et al. Global and time-resolved mo-nitoring of crop photosynthesis with chlorophyll fluorescence[J]. Proceedings of the National Academy of Sciences,2014,111(14):E1327-E1333. DOI:10.1073/pnas. 1320008111 .
doi: 10.1073/pnas. 1320008111
9 Wang Ya'nan, Wei Jin, Tang Xuguang, et al.Progress of using the Chlorophyll Fluorescence to estimate terrestrial gross primary production[J].Remote Sensing Technology and Application,2020,35(5):975-989.
9 王雅楠,韦瑾,汤旭光,等. 应用叶绿素荧光估算植被总初级生产力研究进展[J].遥感技术与应用,2020,35(5):975-989.
10 Liu J, Bowman K W, Schimel D S,et al. Contrasting carbon cycle responses of the tropical continents to the 2015-2016 El Nino[J].Science,2017, 358(6360):5690. DOI:10.1126/science.aam5690 .
doi: 10.1126/science.aam5690
11 Parazoo N C, Bowman K, Frankenberg C,et al. Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO2 and chlorophyll fluorescence from GOSAT[J].Geophysical Research Letters,2013, 40(11): 2829-2833. DOI:10.1002/grl.50452 .
doi: 10.1002/grl.50452
12 Wang S, Huang C, Zhang L,et al. Monitoring and assessing the 2012 drought in the great plains: analyzing satellite-retrieved Solar-Induced Chlorophyll Fluorescence, drought indices,and gross primary production[J].Remote Sensing,2016, 8(2):61. DOI:10.3390/rs8020061 .
doi: 10.3390/rs8020061
13 Jonard F, De Cannière S, Brüggemann N,et al. Value of Sun-Induced Chlorophyll Fluorescence for quantifying hydrological states and fluxes: current status and challenges[J].Agricultural and Forest Meteorology,2020, 291: 108088. DOI:10.1016/j.agrformet.2020.108088 .
doi: 10.1016/j.agrformet.2020.108088
14 Zhang Y, Commane R, Zhou S,et al. Light limitation regulates the response of autumn terrestrial carbon uptake to warming[J].Nature Climate Change,2020, 10(8): 739-743. DOI:10.1038/s41558-020-0806-0 .
doi: 10.1038/s41558-020-0806-0
15 Zhang Y, Joiner J, Alemohammad S H,et al. A global spatially Contiguous Solar-Induced Fluorescence (CSIF) dataset using neural networks[J].Biogeosciences,2018, 15(19): 5779-5800. DOI:10.5194/bg-15-5779-2018 .
doi: 10.5194/bg-15-5779-2018
16 Li X& Xiao J. A global, 0.05-degree product of Solar-Induced Chlorophyll Fluorescence derived from OCO-2, MODIS, and reanalysis data[J].Remote Sensing,2019, 11(5):517. DOI:10.3390/rs11050517 .
doi: 10.3390/rs11050517
17 Yu L, Wen J, Chang C Y,et al. High-resolution global contiguous SIF of OCO-2[J].Geophysical Research Letters,2019, 46(3): 1449-1458. DOI:10.1029/2018gl081109 .
doi: 10.1029/2018gl081109
18 Duveiller G& Cescatti A. Spatially downscaling Sun-Induced Chlorophyll Fluorescence leads to an improved temporal correlation with gross primary productivity[J].Remote Sensing of Environment,2016,182:72-89. DOI:10.1016/j.rse.2016. 04.027 .
doi: 10.1016/j.rse.2016. 04.027
19 Duveiller G, Filipponi F, Walther S,et al. A spatially downscaled Sun-Induced Fluorescence global product for enhanced monitoring of vegetation productivity[J].Earth System Science Data,2020, 12(2): 1101-1116. DOI:10.5194/essd-12-1101-2020 .
doi: 10.5194/essd-12-1101-2020
20 Wen J, Köhler P, Duveiller G,et al. A framework for harmonizing multiple satellite instruments to generate a long-term global high spatial-resolution Solar-Induced Chlorophyll Fluorescence (SIF)[J].Remote Sensing of Environment,2020, 239:111644. DOI:10.1016/j.rse.2020.111644 .
doi: 10.1016/j.rse.2020.111644
21 Li X, Xiao J. Mapping photosynthesis solely from Solar-Induced Chlorophyll Fluorescence: A global, fine-resolution dataset of gross primary production derived from OCO-2[J].Remote Sensing,2019, 11(21). DOI:10.3390/rs11212563 .
doi: 10.3390/rs11212563
22 Li X, Xiao J. Global climatic controls on interannual variability of ecosystem productivity: similarities and differences inferred from Solar-Induced Chlorophyll Fluorescence and enhanced vegetation index[J].Agricultural Forest Meteorology,2020,288-289:108018. DOI:10.1016/j.agrformet.2020. 108018 .
doi: 10.1016/j.agrformet.2020. 108018
23 Gang C, Pan S, Tian H,et al. Satellite observations of forest resilience to hurricanes along the northern Gulf of Mexico[J].Forest Ecology and Management,2020, 472:118243. DOI:10.1016/j.foreco.2020.118243 .
doi: 10.1016/j.foreco.2020.118243
24 Li C, Sun G, Cohen E,et al. Modeling the impacts of urbanization on watershed-scale gross primary productivity and tradeoffs with water yield across the conterminous United States[J]. Journal of Hydrology,2020,583:124581. DOI:10.1016/j.jhydrol.2020.124581 .
doi: 10.1016/j.jhydrol.2020.124581
25 Wei J, Tang X, Gu Q,et al. Using Solar-Induced Chlorophyll Fluorescence observed by OCO-2 to predict autumn crop production in China[J].Remote Sensing,2019, 11(14): 1715. DOI: 10.3390/rs11141715 .
doi: 10.3390/rs11141715
26 Cao J, Zhang Z, Tao F,et al. Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches[J].Agricultural and Forest Meteorology,2021,297:108275. DOI:10.1016/j.agrformet. 2020.108275 .
doi: 10.1016/j.agrformet. 2020.108275
[1] 沈洁,辛晓平,张景,苗晨,王旭,丁蕾,沈贝贝. 基于Cubist的中国植被区域叶绿素荧光数据重建[J]. 遥感技术与应用, 2022, 37(1): 244-252.
[2] 孙忠秋,高显连,杜珊珊,刘新杰. 全球日光诱导叶绿素荧光卫星遥感产品研究进展与展望[J]. 遥感技术与应用, 2021, 36(5): 1044-1056.
[3] 李晓东,闫守刚,宋开山. 遥感监测东北地区典型湖泊湿地变化的方法研究[J]. 遥感技术与应用, 2021, 36(4): 728-741.
[4] 金航,竞霞,高媛,刘良云. 遥感探测小麦条锈病严重度的GBRT模型研究[J]. 遥感技术与应用, 2021, 36(2): 411-419.
[5] 王华,周玉科,王笑影,周成虎. 东北植被生长峰值特征的变化及对气候和物候的响应[J]. 遥感技术与应用, 2021, 36(2): 441-452.
[6] 张茂,张霞,胡光成,王楠. 遥感干旱指数在洛川苹果干旱监测中的适用性分析[J]. 遥感技术与应用, 2021, 36(1): 187-197.
[7] 王浩天,汪源,袁强强. 2008~2016年MODIS多角度大气校正气溶胶产品在中国的时空分布及变化趋势[J]. 遥感技术与应用, 2021, 36(1): 217-228.
[8] 桑宇星,刘刚,江聪,任舒艳,朱再春. 近30 a中国叶面积指数变化趋势的不确定性评估[J]. 遥感技术与应用, 2020, 35(5): 1028-1036.
[9] 刘刚,桑宇星,赵茜,江聪,朱再春. 生态系统模型模拟中国叶面积指数变化趋势及驱动因子的不确定性[J]. 遥感技术与应用, 2020, 35(5): 1037-1046.
[10] 方红亮. 我国叶面积指数卫星遥感产品生产及验证[J]. 遥感技术与应用, 2020, 35(5): 990-1003.
[11] 魏石梅, 潘竟虎, 妥文亮. 2015年中国PM2.5浓度遥感估算与时空分布特征[J]. 遥感技术与应用, 2020, 35(4): 845-854.
[12] 马延吉,王宗明,王江浩,左小安,段洪涛,刘阁,任嘉敏. 典型区“美丽中国”全景评价指标体系构建思路[J]. 遥感技术与应用, 2020, 35(2): 287-294.
[13] 沈明,丁云生,段洪涛. 基于地球大数据的“美丽湖泊” SDG 6.3.2综合评价体系构建[J]. 遥感技术与应用, 2020, 35(2): 295-301.
[14] 张新平,乔治,李皓,闫杰,张芳芳,赵栋锋,王得祥,康海斌,杨航,冯扬. 基于Landsat影像和不规则梯形方法遥感反演延安城市森林表层土壤水分[J]. 遥感技术与应用, 2020, 35(1): 120-131.
[15] 李志鹏,陈健. 基于GOCI卫星的大气细颗粒物PM2.5的遥感反演及其时空分布规律研究[J]. 遥感技术与应用, 2020, 35(1): 163-173.