Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (1): 148-160    DOI: 10.11873/j.issn.1004-0323.2022.1.0148
青促会十周年专栏     
缅甸土地覆被遥感制图和空间格局分析
赵辉1,3(),王泽根2,雷光斌3,边金虎3,李爱农3
1.西南石油大学土木工程与测绘学院,四川 成都 610500
2.西南石油大学地球科学院与技术学院,四川 成都 610500
3.中国科学院、水利部成都山地灾害与环境研究所,四川 成都 610041
Land Cover Mapping and Spatial Pattern Analysis with Remote Sensing in Myanmar
Hui Zhao1,3(),Zegen Wang2,Guangbin Lei3,Jinhu Bian3,Ainong Li3
1.School of Civil Engineering and Geomatics,Southwest Petroleum University,Chengdu 610500,China
2.College of Geosciences and Technology,Southwest Petroleum University,Chengdu 610500,China
3.Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu 610041,China
 全文: PDF(6621 KB)  
摘要:

在“一带一路”倡议框架下,中缅经济走廊逐步从概念转入实质规划建设阶段,了解和掌握缅甸土地覆被的空间格局和分布特征对于合理开发利用资源、制定务实的经济廊道建设规划具有重要的战略意义。利用Landsat-8 OLI遥感影像数据,基于多分类器集成的面向对象迭代分类方法(OIC-MCE),生产了缅甸2015年30 m分辨率土地覆被产品(MyanmarLC-2015)。采用Google Earth高分辨率影像获取验证样本用于产品精度验证,验证结果表明:MyanmarLC-2015产品的总体分类精度为89.05%,Kappa系数为0.87,各类别的用户精度和制图精度均超过72%,能够准确地反映缅甸土地覆被类型的空间格局。根据产品统计,林地是缅甸面积最大的土地覆被类型,占国土面积56.15%,以常绿阔叶林为主,占林地面积83.57%。耕地面积次之,占国土面积27.01%。地形因子对缅甸土地覆被类型空间分布格局有显著的影响,随着海拔升高,呈现出按如下顺序的垂直地带性特征:森林湿地、水田、旱地、落叶灌木林、落叶阔叶林、常绿灌木林、常绿阔叶林、常绿针叶林。从植被生产力的角度来看,缅甸东部、东北部和东南部植被NPP最大,中部干旱地区和南部伊洛瓦底江三角洲植被NPP较低。缅甸2015年植被平均净初级生产力中常绿林地类型高于落叶林地,阔叶林的高于灌木林,耕地中旱地生产力高于水田。

关键词: 缅甸土地覆被遥感空间格局植被净初级生产力(NPP)    
Abstract:

Under the framework of the "Belt and Road" initiative, the China-Myanmar Economic Corridor has gradually moved from planning to substantive construction. Understanding the spatial pattern and distribution characteristics of land cover in Myanmar is of great strategic significance for the rational exploitation and utilization of resources and the planning of economic corridor construction. In this paper, a 30m resolution land cover product of Myanmar in 2015 (hereinafter referred to as the MyanmarLC-2015) was produced using Landsat8 OLI remote sensing images, based on the Object-oriented Iterative Classification method based on Multiple Classifiers Ensemble (OIC-MCE). Besides, the accuracy validation of the MyanmarLC-2015 was conducted by using samples obtained from high-resolution Google Earth imagery. The verification results show that the overall classification accuracy of MyanmarLC-2015 product is 89.05%, the Kappa coefficient is 0.87, which can accurately reflect the spatial distribution characteristics of land cover in Myanmar. According to statistics, forest is the major land cover class in Myanmar, accounting for 56.15% of the total land area of Myanmar. The cultivated land area followed, accounting for 27.01% of the total land area. Combined with topographic factors, we know that with the increase of altitude, the appearance pattern of the typical land cover classes is tree wetlands, paddy fields, dry lands, deciduous shrublands, deciduous broadleaf forests, evergreen shrublands, evergreen broadleaf forests, and evergreen needleleaf forests. From the perspective of vegetation productivity, the NPP of vegetation is the largest in the eastern, northeastern and southeastern parts of Myanmar, while it is lower of vegetation in the central arid region and the southern Irrawaddy Delta. In 2015, the average of Net Primary Productivity for vegetation in Myanmar was higher in evergreen forest than deciduous forest, broad-leaved forest higher than shrub forest, and the productivity of dry land in cultivated land higher than paddy field.

Key words: Myanmar    Land cover    Remote sensing    Spatial pattern    Net Primary Productivity (NPP)
收稿日期: 2021-02-05 出版日期: 2022-04-08
ZTFLH:  P237  
基金资助: 中国科学院战略性先导科技专项子课题(XDA19030303);国家自然科学基金项目(41701433);第二次青藏高原综合考察研究项目(2019QZKK0308)
通讯作者: 雷光斌     E-mail: zhaohuixs@163.com
作者简介: 赵辉(1996-),男,四川江油人,硕士研究生,主要从事土地利用/覆被遥感监测研究。E?mail: zhaohuixs@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵辉
王泽根
雷光斌
边金虎
李爱农

引用本文:

赵辉,王泽根,雷光斌,边金虎,李爱农. 缅甸土地覆被遥感制图和空间格局分析[J]. 遥感技术与应用, 2022, 37(1): 148-160.

Hui Zhao,Zegen Wang,Guangbin Lei,Jinhu Bian,Ainong Li. Land Cover Mapping and Spatial Pattern Analysis with Remote Sensing in Myanmar. Remote Sensing Technology and Application, 2022, 37(1): 148-160.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.1.0148        http://www.rsta.ac.cn/CN/Y2022/V37/I1/148

1 Gao Dongfang. Technology innovation points of China-Myanmar oil and gas pipeline engineering[J]. Oil-Gas Field Surface Engineering, 2014,33(11):93-94.
1 高东方.中缅油气管道工程技术创新点[J].油气田地面工程, 2014,33(11):93-94.
2 Murray N J, Keith D A, Duncan A, et al. Myanmar's terrestrial ecosystems: Status, threats and conservation opportunities[J]. Biological Conservation, 2020,252:108834. DOI:10. 1016/J.BIOCON.2020.108834 .
doi: 10. 1016/J.BIOCON.2020.108834
3 Murray N J, Keith D A, Tizard R, et al. Threatened ecosystems of Myanmar. An IUCN Red List of Ecosystems Assessment[M]. Wildlife Conservation Society, 2020.
4 De Alban J D T, Jamaludin J, Wong de Wen D, et al. Improved estimates of mangrove cover and change reveal catastrophic deforestation in Myanmar[J]. Environmental Research Letters, 2020,15(3):34. DOI:10.1088/1748-93261/ab666d .
doi: 10.1088/1748-93261/ab666d
5 Connette G, Oswald P, Songer M, et al. Mapping distinct forest types improves overall forest identification based on multi-spectral Landsat imagery for Myanmar’s Tanintharyi Region[J].Remote Sensing,2016,8(11):882. DOI: 10.3390/ rs8110882 .
doi: 10.3390/ rs8110882
6 Food and Agriculture Organization of the United Nations,Global Forest Resources Assessment 2020[R]. 2020.
6 联合国粮食及农业组织,全球森林资源评估2020[R].2020.
7 Mcginn A J, Wagner P D, Htike H, et al. Twenty Years of Change: Land and Water Resources in the Chindwin Catchment, Myanmar between 1999 and 2019 [J]. Sciences Total Environment,2021,798:148766. DOI:10.1016/j.scitotenv. 2021.148766 .
doi: 10.1016/j.scitotenv. 2021.148766
8 Kong Zhijian. Preliminary study on current situation and prospect of agricultural development in Myanmar[J]. Journal of Nanning Vocational and Technical College,2011,16(2):34-37.
8 孔志坚.缅甸农业发展现状与前景初探[J].南宁职业技术学院学报,2011,16(2):34-37.
9 Huang Qixing. Overview of agriculture in Myanmar and brief introduction of recent agricultural public opinion[J]. Information on World Tropical Agriculture, 2019(8):6-7.
9 黄启星.缅甸农业概况与近期农业舆情简述[J].世界热带农业信息,2019(8):6-7.
10 Wen Guoquan, Wei Mi, Lan Zongbao, et al.Current situation of agricultural science and technology development in Myanmar and analysis of international cooperation in agriculture between China and Myanmar[J].Journal of Southern Agriculture, 2019,50(6):1392-1398.
10 温国泉,韦幂,兰宗宝,等.缅甸农业科技发展现状及中缅农业国际合作分析[J].南方农业学报, 2019,50(6):1392-1398.
11 Zhou Xing, Li Xiaohong, Huang Yanfang, et al. Current situation and prospect of agricultural science and technology cooperation between Guangxi and Myanmar[J]. Journal of Tropical Agriculture,2020,40(10):133-139.
11 周行,李小红,黄艳芳,等.广西与缅甸农业科技合作现状及展望[J].热带农业科学,2020,40(10):133-139.
12 Estque R C, Myint S W, Wang C, et al. Assessing environmental impacts and change in Myanmar's mangrove ecosystem service value due to deforestation (2000~2014)[J]. Glob Chang Biology, 2018, 24(11):5391-5410. DOI: 10.1111/gcb.14409 .
doi: 10.1111/gcb.14409
13 Aung T S, Fischer T B, Buchanan J. Land use and land cover changes along the China-Myanmar oil and gas pipelines-Monitoring infrastructure development in remote conflict-prone regions[J]. PLoS One, 2020,15(8):e0237806. DOI: 10.1371/journal.pone.0237806 .
doi: 10.1371/journal.pone.0237806
14 Zhou Junsong, Li Shihua. Spatial-temporal change analysis of land use/cover in key nodes of China-Myanmar oil and gas pipeline during 2012~2015[J].Bulletin of Surveying and Mapping, 2018(3):113-116.
14 周峻松,李石华.2012~2015年中缅油气管道重要节点土地利用/覆被时空变化分析[J].测绘通报,2018(3):113-116.
15 Chen J, Chen J, Liao A, et al. Global land cover mapping at 30 m resolution: a POK-based operational approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103(May):7-27. DOI: 10.1016/j.isprsjprs.2014.09.002 .
doi: 10.1016/j.isprsjprs.2014.09.002
16 Lei G, Li A, Bian J, et al. The roles of criteria, data and classification methods in designing land cover classification systems: evidence from existing land cover data sets[J]. International Journal of Remote Sensing, 2020,41(14):5062-5082. DOI: 10.1080/ 01431161.2020.1724349 .
doi: 10.1080/ 01431161.2020.1724349
17 Zhang Lei, Wu Bingfang, Li Xiaosong, et al. Land cover classification system in China based on carbon budget[J].Acta Ecologica Sinica, 2014,34(24):7158-7166.
17 张磊,吴炳方,李晓松,等.基于碳收支的中国土地覆被分类系统[J].生态学报,2014,34(24):7158-7166.
18 Lei Guangbin, Li Ainong, Bian Jinhu, et al. OIC-MCE: a practical land cover mapping approach for limited samples based on multiple classifier ensemble and iterative classification[J]. Remote Sensing, 2020,12(6):987. DOI: 10.3390/rs12060987 .
doi: 10.3390/rs12060987
19 Tu Yuanjie, Zhou Jianhua. An adaptive method of classification pattern generalization: Taking land use classification of remote sensing image as an example[J].Remote Sensing Technology and Application,2016,31(5):994-1002.
19 涂媛杰,周坚华.分类图斑概括的一种自适应方法——以遥感图像土地利用分类为例[J].遥感技术与应用, 2016,31(5):994-1002.
20 Zhao Danping, Gu Haiyan, Jia Ying. Contrastive analysis of object oriented image classification using machine learning method[J]. Science of Surveying and Mapping, 2016,41(10):181-186.
20 赵丹平,顾海燕,贾莹.机器学习法在面向对象影像分类中的对比分析[J].测绘科学,2016,41(10):181-186.
21 Lin Hui, Shao Congying, Li Haitao, et al. Comparison of five object-oriented classification methods for high-resolution remote sensing images[J].Bulletin of Surveying and Mapping, 2017(11):17-21.
21 林卉,邵聪颖,李海涛,等.高分辨率遥感影像5种面向对象分类方法对比研究[J].测绘通报, 2017(11):17-21.
22 Xing Jin. Comparative analysis of machine learning algorithm in land cover classification of high-resolution remote sensing images[J].Gansu Science and Technology, 2020, 36(3):27-34.
22 邢瑾.机器学习算法在高分辨率遥感影像土地覆被分类中的对比分析[J].甘肃科技,2020,36(3):27-34.
23 Wang Z, Yao W, Tang Q, et al. Continuous change detection of forest/grassland and cropland in the Loess plateau of China using all available Landsat data[J]. Remote Sensing, 2018,10(11):1775. DOI: 10.3390/rs10111775
doi: 10.3390/rs10111775
24 Liu Yukang, Zhang Zhengyang, Chen Linlin, et al. Improved one-to-many SVM multi-classifier based on KNN algorithm[J].Computer Engineering and Applications, 2015,51(24):126-131.
24 刘雨康,张正阳,陈琳琳,等.基于KNN算法的改进的一对多SVM多分类器[J].计算机工程与应用,2015,51(24):126-131.
25 Li Xü, Cheng Tao, Cao Weixing, et al. Study on land classification of nanjing based on quest decision tree based Landsat 8 remote sensing image[J]. Hubei Agricultural Sciences, 2017,56(1):35-38.
25 李旭,程涛,曹卫星,等.基于QUEST决策树的Landsat 8遥感影像的南京市土地分类研究[J].湖北农业科学,2017,56(1):35-38.
26 Luo M, Xie J, Yan Y, et al. Comparing machine learning algorithms in predicting thermal sensation using ASHRAE comfort database II[J]. Energy and Buildings, 2020, 210(Mar.):109776.1-109776.16. DOI: 10.1016/j.enbuild.2020.109776 .
doi: 10.1016/j.enbuild.2020.109776
[1] 郭擎,朱丽娅,李安,顾铃燕. 基于NDVI变化检测的滑坡遥感精细识别[J]. 遥感技术与应用, 2022, 37(1): 17-23.
[2] 王茜,宋开山,毛德华,焉恒琦,谭晓宇,王宗明. 1980~2018朝鲜半岛西海岸滨海湿地演化分析[J]. 遥感技术与应用, 2022, 37(1): 108-116.
[3] 杨凤珠,王震山,张乾,孙善磊,柳艺博. 多源日光诱导叶绿素荧光产品在中国地区的一致性研究[J]. 遥感技术与应用, 2022, 37(1): 125-136.
[4] 赵天玮,朱文彬,裴亮,宝康妮. 三江源蒸散发遥感估算及其时空分布特征研究[J]. 遥感技术与应用, 2022, 37(1): 137-147.
[5] 黄耀欢,熊标,杨海军,伍程斌,朱海涛. 入河排污口遥感排查进展评述[J]. 遥感技术与应用, 2022, 37(1): 24-33.
[6] 李翔华,黄春林,侯金亮,韩伟孝,冯娅娅,陈彦四,王静. 结合遥感和统计数据的家畜分布网格化方法研究[J]. 遥感技术与应用, 2022, 37(1): 262-271.
[7] 张红月,李宜展,陈思明,黄铭瑞,孙玉. 近10 a全球遥感科学研究的时空动态分析[J]. 遥感技术与应用, 2022, 37(1): 45-60.
[8] 徐艳豪,丁忠昊,宋立生. TSEB模型在复杂下垫面下模拟结果比较研究[J]. 遥感技术与应用, 2022, 37(1): 85-93.
[9] 张欢,李弘毅,李浩杰,车涛. 基于机载LiDAR的高寒山区遥感高程数据精度评估[J]. 遥感技术与应用, 2021, 36(6): 1311-1320.
[10] 尹芳,封凯,吴朦朦,拜得珍,王蕊,周园园,尹春涛,尹翠景,刘磊. 一种基于分段偏最小二乘模型的土壤重金属遥感反演方法[J]. 遥感技术与应用, 2021, 36(6): 1321-1328.
[11] 李杰,贾坤,张宁,魏香琴,王冰. 基于遥感与生态服务模型的青岛市生态保护重要性评价[J]. 遥感技术与应用, 2021, 36(6): 1329-1338.
[12] 陈喆,董庆,陈建平,赵文博,蒋良文,张广泽,冯涛,王栋,毕晓佳,边民,张权平,孟德利. 基于热红外遥感的川藏铁路昌都—林芝段地热异常区定量预测评价研究[J]. 遥感技术与应用, 2021, 36(6): 1368-1378.
[13] 梁立锋,谭本华,马咏珊,陈漾漾,刘秀娟. 基于多源地理大数据的城市空间结构研究[J]. 遥感技术与应用, 2021, 36(6): 1446-1456.
[14] 王昀琛,黄春林,冯娅娅,顾娟. 基于2030可持续发展目标的珠三角土地消耗率与人口增长率协调关系评价[J]. 遥感技术与应用, 2021, 36(5): 1168-1177.
[15] 李益敏,王东驰,刘心知,袁静,赵志芳. 中缅边境典型城市扩张遥感动态监测及驱动力分析[J]. 遥感技术与应用, 2021, 36(5): 1155-1167.