1 | Dassort M锛� Constant T锛� Fournier M. The use of terrestrial LiDAR technology in forest science锛� application fields锛� benefits and challenges锛籎锛�. Annal of Forest Science锛� 2011锛� 68锛�5锛夛細959-974. DOI锛� 10.1007/s13595-011-0102-2 . |
2 | Ma Y C锛� Piao S L锛� Sun Z Z锛� et al. Stand ages regulate the response of soil respiration to temperature in a Larix Principis-rupprechtii plantation锛籎锛�. Agricultural and Forest Meteorology锛�2014锛�184锛�179-187. DOI锛�10.1016/j.agrformet.2013. 10.008 . |
3 | Srinivasan S锛� Popescu S C锛� Eriksson M锛� et al. Multi-temporal terrestrial laser scanning for modeling tree biomass change锛籎锛�. Foestr Ecology and Management锛� 2014锛� 318锛� 304-317. DOI锛� 10.1016/j.foreco.2014.01.038 . |
4 | Liang X L锛� Kankare V锛� Hyyppa J锛� et al. Terrestrial laser scanning in forest inventories锛籎锛�. ISPRS Journal of Photogrammetry and Remote Sensing锛� 2016锛� 115锛�63-77. DOI锛� 10.1016/j.isprsjprs.2016.01.006 . |
5 | Lin Y. LiDAR锛� An important tool for next-generation phenotyping technology of high potential for plant phenomics锛燂蓟J锛�. Computers and Electronics and Agriculture锛� 2015锛� 119锛�61-73.DOI锛� 10.1016/j.compag.2015.10.011 . |
6 | Llorens J锛� Gil E锛� Llop J锛� et al. Ultrasonic and LiDAR sensors for electronic canopy characterization in vineyards锛� advances to improve pesticide application methods锛籎锛�. Sensors锛� 2011锛� 11锛�2锛夛細 2177-2194.DOI锛� 10.3390/s110202177 . |
7 | Msdec S锛� Baret F锛� de Solan B锛� et al. High-throughput phenotyping of plant height锛� comparing unmanned aerial vehicles and ground LiDAR estimates锛籎锛�. Frontiers in Plant Science锛� 2017锛� 8锛�14.DOI锛� 10.3389/fpls.2017.02002 . |
8 | Berk P锛� Hocevar M锛� Stajnko D锛� et al. Development of alternative plant protection product application techniques in Orchards锛� based on measurement sensing systems锛� a review锛籎锛�. Computers and Electronics in Agriculture锛� 2016锛� 124锛� 273-288.DOI锛� 10.1016/j.compag.2016.04.018 . |
9 | Yu Y锛� Gao T锛� Zhu J锛� et al. Terrestrial laser scanning鈥恉erived Canopy interception index for predicting rainfall interception锛籎锛�. Ecohydrology锛�2020锛�13锛�5锛夛細15. DOI锛�10.1002/eco. 2212 . |
10 | Li Y M锛� Su Y J锛� ZHao X X锛� et al. Retrieval of tree branch architecture attributes from terrestrial laser scan data using a Laplacian Algorithm锛籎锛�. Agricultural and Forest Meteorology锛� 2020锛� 284锛�107874.DOI锛� 10.1016/j.agrformet.2019.107874 . |
11 | Li Y M锛� Guo Q H锛� Su Y J锛� et al. Retrieving the gap fraction锛� element clumping index锛� and leaf area index of individual trees using single-scan data from a terrestrial laser scanner锛籎锛�. ISPRS Journal of Photogrammetry and Remote Sensing锛� 2017锛� 130锛�308-316.DOI锛� 10.1016/j.isprsjprs.2017.06.006 . |
12 | Zhao K锛� Garcia M锛� Liu S锛� et al. Terrestrial Lidar remote sensing of forests锛� maximum likelihood estimates of canopy profile锛� leaf area index锛� and leaf angle distribution锛籎锛�. Agricultural and Forest Meteorology锛�2015锛�209-210锛�100-113. DOI锛� 10.1016/j.agrformet.2015.03.008 . |
13 | Bailey B N锛� Mahaffee W F. Rapid measurement of the three-dimensional distribution of leaf orientation and the leaf angle probability density function using terrestrial LiDAR scanning锛籎锛�.Remote Sensing of Environment锛�2017锛�194锛�63-76. DOI锛� 10.1088/1361-6501/aa5cfd . |
14 | Liu J锛� Wang T锛� Skidmore A K锛� et al. Comparison of terrestrial LiDAR and digital hemispherical photography for estimating leaf angle distribution in european broadleaf beech forests锛籎锛�. ISPRS Journal of Photogrammetry and Remote Sensing锛� 2019锛� 158锛�76-89. DOI锛� 10.1016/j.isprsjprs.2019.09.015 . |
15 | C?t茅 J F锛� Widlowski J L锛� Fournier R A锛� et al. The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial LiDAR锛籎锛�. Remote Sensing of Environment锛�2009锛�113锛�5锛夛細1067-1081. DOI锛�10.1016/j.rse.2009. 01.017 . |
16 | Hu S J锛� Li Z R锛� Zhang Z Y锛� et al. Efficient tree modeling from airborne LiDAR point clouds锛籎锛�. Computers & Graphics锛� 2017锛� 67锛�1-13.DOI锛� 10.1016/j.cag.2017.04.004 . |
17 | Calders K锛� Origo N锛� Burt A锛� et al. Realistic forest stand reconstruction from terrestrial LiDAR for radiative transfer modelling锛籎锛�. Remote Sensing锛� 2018锛� 10锛�6锛夛細 15.DOI锛� 10.3390/rs10060933 . |
18 | Tao S L锛� Guo Q H锛� Xu S W锛� et al. A geometric method for wood-leaf separation using terrestrial and simulated LiDAR data锛籎锛�. Photogrammetric Engineering & Remote Sensing锛� 2015锛� 81锛�10锛夛細 767-776.DOI锛� 10.14358/pers.81.10.767 . |
19 | Strahler A H锛� Jupp D L B锛� Woodcock C E锛� et al. Retrieval of forest structural parameters using a ground-based LiDAR instrument 锛圗chidna 锛圧锛夛級锛籎锛�. Canadian Journal of Remote Sensing锛� 2008锛� 34锛歋426-S40.DOI锛� 10.5589/m08-046 . |
20 | Danson F M锛� Sasse F锛� Schofield L A. Spectral and spatial information from a novel dual-wavelength full-waveform terrestrial laser scanner for forest ecology锛籎锛�.Interface Focus锛�2018锛� 8锛�2锛夛細 20170049.DOI锛� 10.1098/rsfs.2017.0049 . |
21 | Raumonen P锛� Kaasalainen M锛� Akerblom M锛� et al. Fast automatic precision tree models from terrestrial laser scanner data锛籎锛�. Remote Sensing锛� 2013锛� 5锛�2锛夛細 491-520.DOI锛� 10.3390/rs5020491 . |
22 | Calders K锛� Disney M I锛� Armston J锛� et al. Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability锛籎锛�. IEEE Transactions on Geoscience and Remote Sensing锛� 2017锛�55锛�5锛夛細2716-2724. DOI锛�10.1109/tgrs.2017.2652721 . |
23 | Disney M I锛� Vicari M B锛� Burt A锛� et al. Weighing trees with lasers锛� advances锛� challenges and opportunities锛籎锛�. Interface Focus锛� 2018锛� 8锛�2锛夛細 14.DOI锛� 10.1098/rsfs.2017.0048 . |
24 | Yun T锛� An F锛� Li W锛� et al. A novel approach for retrieving tree leaf area from ground-based LiDAR锛籎锛�. Remote Sensing锛� 2016锛� 8锛�11锛夛細 21.DOI锛� 10.3390/rs8110942 . |
25 | Ma L X锛� Zheng G锛� Eitel J U H锛� et al. Improved salient feature-based approach for automatically separating photosynthetic and nonphotosynthetic components within terrestrial LiDAR point cloud data of forest canopies锛籎锛�. IEEE Transactions on Geoscience and Remote Sensing锛� 2016锛� 54锛�2锛夛細 679-696.DOI锛� 10.1109/tgrs.2015.2459716 . |
26 | Wang D锛� Hollaus M锛� Pfeifer N. Feasibility of machine learning methods for separating wood and leaf points from terrestrial laser scaning data锛籎锛�. ISPRS Annals of Photogrammetry锛� Reomte Sensing and Spatial Information Sciences锛�2017锛� IV-2/W4锛�157-164. |
27 | Li S H锛� Dai L Y锛� Wang H S锛� et al. Estimating leaf area density of individual trees using the point cloud segmentation of terrestrial LiDAR data and a Voxel-based model锛籎锛�. Remote Sensing锛� 2017锛� 9锛�11锛夛細 1202.DOI锛� 10.3390/rs9111202 .. |
28 | Vicari M B锛� Disney M锛� Wilkes P锛� et al. Leaf and wood classification framework for terrestrial LiDAR point clouds锛籎锛�. Methods in Ecology and Evolution锛� 2019锛� 10锛�5锛夛細 680-694.DOI锛� 10.1111/2041-210x.13144 . |
29 | Su Z H锛� Li S H锛� Liu H H锛� et al. Extracting wood point cloud of individual trees based on geometric features锛籎锛�. IEEE Geoscience and Remote Sensing Letters锛� 2019锛� 16锛�8锛夛細 1294-1298.DOI锛� 10.1109/lgrs.2019.2896613 . |
30 | Wang Hongshu锛� Li Shihua锛� Guo Jiawei锛� et al. Retrieval of the leaf area density of magnolia woody canopy with terrestrial laser-scanning data锛籎锛�.Journal of Remote Sensing锛�2016锛�20锛�4锛夛細570-578. |
30 | 鐜嬫椽铚�锛屾潕涓栧崕锛岄儹鍔犱紵锛岀瓑. 鍦板熀婵�鍏夐浄杈剧殑鐜夊叞鏋楀啝鍙堕潰绉瘑搴﹀弽婕旓蓟J锛�.閬ユ劅瀛︽姤锛�2016锛�20锛�4锛夛細570-578 |
31 | Wang D锛� Takoudjou S M锛� Casella E. LeWoS锛� A universal leaf-wood classification method to facilitate the 3D modelling of large tropical trees using terrestrial LiDAR锛籎锛�. Methods in Ecology and Evolution锛�2020锛�11锛�3锛夛細376-389. DOI锛�10.1111/2041-210x.13342 . |
32 | Guinard S锛� Landrieu L. Weakly supervised segementation-alded classification of urban scences from 3D LIDAR point clouds锛籑锛�. Gottingen. Copernicus Gesellschaft Mbh. 2017. |
33 | Wang D锛� Brunner J锛� Ma Z Y锛� et al. Separating tree photosynthetic and non-photosynthetic components from point cloud data using dynamic segment merging锛籎锛�. Forests锛�2018锛�9锛�5锛夛細23. DOI锛� 10.3390/f9050252 . |
34 | Klasing K锛� Wollherr D锛� Buss M锛� et al. A clustering method for efficient segmentation of 3 D laser data锛籑锛�. New York锛� IEEE. 2008. |
35 | Raumonen P锛� Tarvainen T. Segmentation of vessel structures from photoacoustic images with reliability assessment锛籎锛�. Biomedical Optics Express锛�2018锛�9锛�7锛夛細2887-2904. DOI锛� 10. 1364/boe.9.002887 . |
36 | Landrieu L锛� Raguet H锛� Vallet B锛� et al. A structured regularization framework for spatially smoothing semantic labelings of 3D point clouds锛籎锛�. ISPRS Journal of Photogrammetry and Remote Sensing锛�2017锛�132锛�102-118. DOI锛�10.1016/j.isprsjprs. 2017.08.010 . |
37 | Wang Z锛� Zhang L Q锛� Fang T锛� et al. A multiscale and hierarchical feature extraction method for terrestrial laser scanning point cloud classification锛籎锛�. IEEE Transactions on Geoscience and Remote Sensing锛�2015锛�53锛�5锛夛細2409-2425. DOI锛�10. 1109/tgrs.2014.2359951 . |
38 | Sokolova M锛� Japkowicz N锛� Szpakowicz S. Beyond accuracy锛� F-Score and ROC锛� a family of discriminant measures for performance evaluation锛籆锛解垾 Australian Joint Conference on Artificial Intelligence锛� Advances in Artificial Intelligence锛孒obart Australia锛� 2006. |
39 | de Tanago J G锛� Lau A锛� Bartholomeus H锛� et al. Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR锛籎锛�. Methods in Ecology and Evolution锛� 2018锛� 9锛�2锛夛細 223-234. DOI锛� 10.1111/2041-210x.12904 . |
40 | Paynter I锛� Genest D锛� Saenz E锛� et al. Quality assessment of terrestrial laser scanner ecosystem observations using pulse trajectories锛籎锛�. IEEE Transactions on Geoscience and Remote Sensing锛� 2018锛� 56锛�11锛夛細 6324-6333. DOI锛� 10.1109/tgrs.2018.2836947 . |
41 | Wan P锛� Zhang W M锛� Jin S N锛� et al. Plot-level wood-leaf separation of trees using terrestrial LiDAR data based on a segmentwise geometric feature classification method锛籎锛�. 2020. DOI锛� 10.21203/rs.3.rs-42032/v1 . |