1 | Lin H L锛� Feng Q S锛� Liang T G锛宔t al. Modelling global-scale potential grassland changes in spatio-temporal patterns to global climate change锛籎锛�. International Journal of Sustainable Development & World Ecology锛�2013锛�20锛�1锛夛細83-96. |
2 | Department of Animal Husbandry and Veterinary锛� Ministry of Agriculture锛� PRC.Grassland Resources in China锛籑锛�. Beijing锛� China Agricultural Science and Technology Press锛� 1996. |
2 | 涓崕浜烘皯鍏卞拰鍥藉啘涓氶儴鐣滅墽鍏藉尰鍙�. 涓浗鑽夊湴璧勬簮锛籑锛�. 鍖椾含锛� 涓浗鍐滀笟绉戝鎶�鏈嚭鐗堢ぞ锛� 1996. |
3 | Wu Jinghua. Study on grassland degeneration in China锛籎锛�. Ecological Economy锛�1995锛�11锛�5锛夛細1-6. |
3 | 鍚寸簿鍗�. 涓浗鑽夊師閫�鍖栫殑鍒嗘瀽鍙婂叾闃叉不瀵圭瓥锛籎锛�. 鐢熸�佺粡娴庯紝 1995锛�11锛�5锛夛細1-6. |
4 | Xie Gaodi锛� Zhang Yili锛� Lu Chunxia锛� et al. Study on valuation of rangeland ecosystem services of China锛籎锛�. Journal of Natural Resources锛� 2001锛� 16锛�1锛夛細 47-53. |
4 | 璋㈤珮鍦帮紝 寮犻拠閿傦紝 椴佹槬闇烇紝 绛�. 涓浗鑷劧鑽夊湴鐢熸�佺郴缁熸湇鍔′环鍊硷蓟J锛�. 鑷劧璧勬簮瀛︽姤锛� 2001锛� 16锛�1锛夛細 47-53. |
5 | Zou Yarong锛� Zhang Zengxiang锛� Zhao Xiaoli锛� et al. Analysis of grassland resource dynamics in China锛� arid region supported by RS and GIS锛籎锛�. Research of Environmental Sciences锛�2003锛�16锛�1锛夛細19-26. |
5 | 閭逛簹鑽o紝寮犲绁ワ紝璧垫檽涓斤紝绛�. GIS鏀寔涓嬫垜鍥藉共鏃卞尯鑽夊湴璧勬簮鍔ㄦ�佸垎鏋愶蓟J锛�. 鐜绉戝鐮旂┒锛�2003锛�16锛�1锛夛細19-26. |
6 | State Environmental Protection Administration.China Environmental Status Bulletin锛籖锛斤紝 2005.鍥藉鐜淇濇姢鎬诲眬. 涓浗鐜鐘跺喌鍏姤锛籖锛斤紝 2005. |
7 | Bai Yongfei锛� Zhao Yujie锛� Wang Yang锛� et al. Assessment of ecosystem services and ecological regionalization of grasslands support establishment of ecological security barriers in northern China锛籎锛�. Bulletin of the Chinese Academy of Sciences锛� 2020锛�35锛�6锛夛細675-689. |
7 | 鐧芥案椋烇紝 璧电帀閲戯紝 鐜嬫壃锛� 绛�. 涓浗鍖楁柟鑽夊湴鐢熸�佺郴缁熸湇鍔¤瘎浼板拰鍔熻兘鍖哄垝鍔╁姏鐢熸�佸畨鍏ㄥ睆闅滃缓璁撅蓟J锛�. 涓浗绉戝闄㈤櫌鍒婏紝 2020锛�35锛�6锛夛細675-689. |
8 | Liu J锛� Chen J M锛� Cihlar J锛� et al. Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data锛籎锛�. Journal of Geophysical Research Atmospheres锛� 1999锛� 104锛圖22锛夛細 27735-27754. |
9 | Zhang Meiling锛� Jiang Wenlan锛� Chen Quangong锛� et al. Research progress in the estimation models of grassland net primary productivity锛籎锛�. Acta Agrestia Sinica锛� 2011锛�19锛�2锛夛細356-366. |
9 | 寮犵編鐜诧紝 钂嬫枃鍏帮紝 闄堝叏鍔燂紝 绛�. 鑽夊湴鍑�绗竴鎬х敓浜у姏浼扮畻妯″瀷鐮旂┒杩涘睍锛籎锛�. 鑽夊湴瀛︽姤锛� 2011锛�19锛�2锛夛細356-366. |
10 | Monteith J L. Solar Radiation and productivity in tropical ecosystems锛籎锛�. Journal of Applied Ecology锛�1972锛�9锛�3锛夛細747-766. |
11 | Monteith J L锛� Moss C J. Climate and the efficiency of crop production in Britain锛籎锛�. Philosophical Transactions of the Royal Society of London Series B锛� Biological Sciences锛� 1977锛� 281锛�980锛夛細 277-294. |
12 | Prince S D锛� Goward S N. Global primary production锛� A remote sensing approach锛籎锛�. Journal of Biogeography锛� 1995锛� 22锛�4/5锛夛細 815-835. |
13 | Xiao X M锛� Hollinger D锛� Aber J锛� et al. Satellite-based modeling of gross primary production in an evergreen needleleaf forest锛籎锛�. Remote Sensing of Environment锛� 2004锛� 89锛�4锛夛細 519-534. |
14 | Veroustraete F锛� Sabbe H锛� Eerens H. Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data锛籎锛�. Remote Sensing of Environment锛� 2002锛� 83锛�3锛夛細 376-399. |
15 | Turner D P锛� Ritts W D锛� Styles J M锛� et al. A diagnostic carbon flux model to monitor the effects of disturbance and interannual variation in climate on regional NEP锛籎锛�. Tellus B锛� Chemical and Physical Meteorology锛� 2006锛� 58锛�5锛夛細 476-490. |
16 | Running S W锛� Thornton P E锛� Nemani R锛� et al. Global terrestrial gross and net primary productivity from the earth observing system锛籑锛�. Methods in Ecosystem Science锛�2000锛�44-57. |
17 | Yuan W P锛� Liu S G锛� Zhou G S锛� et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes锛籎锛�. Agricultural and Forest Meteorology锛� 2007锛� 143锛�3-4锛夛細 189-207. |
18 | Potter C S锛� Randerson J T锛� Field C B锛� et al. Terrestrial ecosystem production锛� A process model based on global satellite and surface data锛籎锛�. Global Biogeochemical Cycles锛� 1993锛� 7锛�4锛夛細 811鈥�841. |
19 | Gower S T锛� Kucharik C J锛� Norman J M. Direct and indirect estimation of leaf area index锛� fAPAR锛� and net primary production of terrestrial ecosystems锛籎锛�. Remote Sensing of Environment锛� 1999锛� 70锛�1锛夛細 29-51. |
20 | Gao B C. NDWI鈥擜 normalized difference water index for remote sensing of vegetation liquid water from space锛籎锛�. Remote Sensing of Environment锛� 1996锛� 58锛�3锛夛細 257-266. |
21 | Schell J A. Monitoring vegetation systems in the great plains with ERTS锛籎锛�. Nasa Special Publication锛� 1973锛� 351锛�309. |
22 | Huete A R锛� Liu H Q锛� Batchily K锛宔t al. A comparison of vegeta-tion indices over a global set of TM images for EOS-MODIS锛籎锛�. Remote Sensing of Environment锛�1997锛�59锛�3锛夛細440-451. |
23 | Huete A锛� Didan K锛� Miura T锛� et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices锛籎锛�. Remote Sensing of Environment锛� 2002锛� 83锛�1-2锛夛細195-213. |
24 | Wang C锛� Chen J锛� Wu J锛� et al. A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems锛籎锛�. Remote Sensing of Environment锛� 2017锛� 196锛� 1-12. |
25 | Gan L Q锛� Cao X锛� Chen J锛� et al. Comparison of winter wheat spring phenology extraction by various remote sensing vegetation indices and methods锛籑锛�. IEEE International Geoscience and Remote Sensing Symposium锛�2019锛�6302-6305. |
26 | Gan L Q锛� Cao X锛� Chen X H锛� et al. Comparison of MODIS-based vegetation indices and methods for winter wheat green-up date detection in Huanghuai region of China锛籎锛�. Agricultural and Forest Meteorology锛� 2020锛�288-289锛�108019. DOI锛�10.1016/j.agrformet.2020.108019 . |
27 | Huang K锛� Zhang Y J锛� Tagesson T锛� et al. The confounding effect of snow cover on assessing spring phenology from space锛� A new look at trends on the Tibetan Plateau锛籎锛�. Science of the Total Environment锛�2021锛�756. DOI锛�10.1016/j.scitotenv.2020.144011 . |
28 | Chen X H锛� Guo Z F锛� Chen J锛� et al. Replacing the red band with the Red-SWIR band 锛�0.74锛坮ed锛�+0.26锛坰wir锛夛級 can reduce the sensitivity of vegetation indices to soil background锛籎锛�. Remote Sensing锛�2019锛�11锛�7锛夛細1-15. |
29 | Xu D W锛� Wang C锛� Chen J锛� et al. The superiority of the Normalized Difference Phenology Index 锛圢DPI锛� for estimating grassland aboveground fresh biomass锛籎锛�. Remote Sensing of Environment锛�2021锛�264锛�112578. DOI锛�10.1016/J.RSE.2021. 112578 . |
30 | Yuan W P锛� Cai W W锛� Xia J Z锛� et al. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database锛籎锛�. Agricultural and Forest Meteorology锛�2014锛�192-193锛�108-20. |
31 | Feng Yiming锛� Yao Aidong锛� Jiang Lina. Improving the CASA model and applying it to estimate the net primary productivity of arid region ecology system.锛籎锛�. Journal of Arid Land Resources and Environment锛� 2014锛� 28锛�8锛夛細39-43. |
31 | 鍐泭鏄庯紝濮氱埍鍐紝濮滀附濞�.CASA妯″瀷鐨勬敼杩涘強鍦ㄥ共鏃卞尯鐢熸�佺郴缁烴PP浼扮畻涓殑搴旂敤锛籎锛�. 骞叉棻鍖鸿祫婧愪笌鐜锛� 2014锛� 28锛�8锛夛細39-43. |
32 | Zhang Meiling锛� Jiang Wenlan锛� Chen Quangong锛� et al. Use improved CASA model to estimate the maximum light use efficiency of of class in grassland comprehensive and sequential classification system锛籎锛�. Grassland and Turf锛� 2012锛� 32锛�4锛夛細60-66. |
32 | 寮犵編鐜诧紝钂嬫枃鍏帮紝闄堝叏鍔燂紝绛�. 鍩轰簬鏀硅繘鐨凜ASA妯″瀷妯℃嫙鑽夊師缁煎悎椤哄簭鍒嗙被浣撶郴鍚勭被鐨勬渶澶у厜鑳藉埄鐢ㄧ巼锛籎锛�. 鑽夊師涓庤崏鍧紝 2012锛� 32锛�4锛夛細60-66. |
33 | Wang H锛� Li X锛� Ma M锛� et al. Improving estimation of gross primary production in dryland ecosystems by a model-data fusion approach锛籎锛�. Remote Sensing锛�2019锛�11锛�3锛夛細225. DOI锛�10.3390/rs11030225 . |
34 | He H L锛� Xiao X M锛� Ren X L锛� et al. Large-scale estimation and uncertainty analysis of gross primary production in Tibetan alpine grasslands锛籎锛�. Journal of Geophysical Research锛� Biogeosciences锛�2013锛�119锛�3锛夛細466-486. DOI锛�10.1002/2013JG 002449 . |
35 | Zheng Yi. Light use efficiency based gross primary productivity estimation and uncertainty analysis锛籇锛�. Beijing锛� The University of Chinese Academy of Sciences锛� 2017. |
35 | 閮戣壓. 鍩轰簬鍏夎兘鍒╃敤鐜囨ā鍨嬬殑妞嶈鎬诲垵绾х敓浜у姏浼扮畻鍙婂叾涓嶇‘瀹氭�у垎鏋愶蓟D锛�. 鍖椾含锛� 涓浗绉戝闄紝 2017. |
36 | Madani N锛� Kimball J S锛� Running S W锛� et al. Improving global gross primary productivity estimates by computing optimum light use efficiencies using flux tower data锛籎锛�. Journal of Geophysical Research锛� Biogeosciences锛� 2017. DOI锛�10.1002/2017JG004142 . |
37 | Lian Xiaomei. Opening Practice during the process of revitalization in Northeast China锛� General strategy and countermeasures锛籎锛�. Northeast Asia Forum锛� 2007锛�16锛�5锛夛細34-37. |
37 | 寤夋檽姊�. 涓滃寳鎸叴杩囩▼涓殑瀵瑰寮�鏀撅細鎬讳綋鎬濊矾涓庡绛栵蓟J锛�. 涓滃寳浜氳鍧涳紝 2007锛�16锛�5锛夛細34-37. |
38 | Mao Dehua锛� Wang Zongming锛� Han Jixing锛� et al. Spatio-temporal pattern of net primary productivity and its driven factors in Northeast China in 1982~2010锛籎锛�. Chinese Geographical Science锛� 2012锛� 32锛�9锛夛細 1106-1111. |
38 | 姣涘痉鍗庯紝 鐜嬪畻鏄庯紝 闊╀蕉鍏达紝 绛�. 1982~2010骞翠腑鍥戒笢鍖楀湴鍖烘琚玁PP鏃剁┖鏍煎眬鍙婇┍鍔ㄥ洜瀛愬垎鏋愶蓟J锛�. 鍦扮悊绉戝锛�2012锛�32锛�9锛夛細1106-1111. |
39 | Tang Huan锛� Li Zhenwang锛� Ding Lei锛� et al. Validation of GPP remote sensing products using eddy covariance flux observations in the grassland area of China锛籎锛�. Pratacultural Science锛� 2018锛� 35 锛�11锛夛細 2568-2583. |
39 | 鍞愭锛� 鏉庢尟鏃猴紝 涓佽暰锛岀瓑. 鍩轰簬鍦伴潰娑″害鏁版嵁鐨勪腑鍥借崏鍘熷尯 GPP閬ユ劅浜у搧楠岃瘉锛籎锛�. 鑽変笟绉戝锛� 2018锛� 35锛�11锛夛細2568-2583. |
40 | Vermote E锛� Kotchenova S Y锛� Ray J P. MODIS surface reflectance user's guide collection 6 锛籗锛�. Version 1.4锛� 2015锛� 11-40. |
41 | Gao B C. NDWI鈥擜 normalized difference water index for remote sensing of vegetation liquid water from space锛籎锛�. Remote Sensing of Environment锛� 1996锛� 58锛�3锛夛細 257-266. DOI锛� 10.1016/S0034-4257锛�96锛�00067-3 . |
42 | Wang C锛� Chen J锛� Wu J锛� et al. A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems锛籎锛�. Remote Sensing of Environment锛� 2017锛� 196锛� 1-12. DOI锛� 10.1016/j.rse.2017.04.031 . |
43 | Moncrieff J B锛� Malhi Y锛� Leuning R.The propagation of errors in long鈥恡erm measurements of land鈥恆tmosphere fluxes of carbon and water锛籎锛�. Global Change Biology锛�1996锛�2锛�3锛夛細231-240. |