1 | Yu Shutong锛� Huang Xianjin锛� Cheng Xushui锛� et al. Comparative study on management experiences of domestic and foreign outfalls into rivers锛籎锛�. Environmental Pollution & Control锛� 2012锛� 34锛�10锛夛細 105-109. |
1 | 浜庢湳妗愶紝 榛勮搐閲戯紝 绋嬬华姘达紝 绛�. 鍥藉唴澶栧叆娌虫帓姹″彛绠$悊缁忛獙鍙婂叾瀵规瘮鐮旂┒锛籎锛�. 鐜姹℃煋涓庨槻娌伙紝 2012锛� 34锛�10锛夛細 105-109. |
2 | Xu J锛� Jin G锛� Tang H锛� et al. Response of water quality to land use and sewage outfalls in different seasons锛籎锛�. Science of The Total Environment锛� 2019锛� 696锛� 134014. DOI锛� 10.1016/j.scitotenv.2019.134014 . |
3 | Huang Y锛� Wu C锛� Yang H锛� et al. An improved deep learning approach for retrieving outfalls into rivers from UAS imagery锛籎锛�. IEEE Transactions on Geoscience and Remote Sensing锛� 2021. DOI锛� 10.1109/TGRS.2021.3113901 . |
4 | Wu X锛� Sahoo D锛� Hoi S C H. Recent advances in deep learning for object detection锛籎锛�.Neurocomputing锛�2020锛�396锛�39-64. |
5 | Seven major rivers in China are seriously polluted锛籎锛�. Science & Technology Association Forum锛� 1997锛�8锛夛細47.锛绘垜鍥戒竷澶ф渤娴佷弗閲嶆薄鏌� 锛籎锛�. 绉戝崗璁哄潧锛� 1997锛�8锛夛細47.锛� |
6 | Liu Chen锛� Wu Liping. Investigation and evaluation of outfalls in Pearl River Basin锛籎锛�. Pearl River锛� 1996锛�1锛夛細49-51. |
6 | 鍒樻櫒锛� 浼嶄附钀�. 鐝犳睙娴佸煙鍏ユ渤鎺掓薄鍙h皟鏌ヤ笌璇勪环锛籎锛�. 浜烘皯鐝犳睙锛� 1996锛�1锛夛細49-51. |
7 | Xiao Guangzhong锛� Luo Xusheng. Development and application of Guangxi river sewage drain outlet general investigation register information acquisition system锛籎锛�. Guangxi Water Resources & Hydropower Engineering锛� 2006锛�1锛夛細 39-41. |
7 | 鑲栧厜蹇狅紝 缃楁棴鍗�. 骞胯タ鍏ユ渤鎺掓薄鍙f櫘鏌ョ櫥璁颁俊鎭噰闆嗙郴缁熺爺鍒跺強搴旂敤锛籎锛�. 骞胯タ姘村埄姘寸數锛� 2006锛�1锛夛細 39-41. |
8 | Liu Yaobin锛� He Xudong. Talking about the information management system of the outfalls into the Huaihe River Basin based on MapX development锛籎锛�. Zhihuai锛� 2008锛�11锛夛細 31-32. |
8 | 鍒樿��瀹撅紝 璐烘棴涓�. 娴呰皥鍩轰簬MapX寮�鍙戠殑娣渤娴佸煙鍏ユ渤鎺掓薄鍙d俊鎭鐞嗙郴缁燂蓟J锛�. 娌绘樊锛� 2008锛�11锛夛細 31-32. |
9 | Zhu Yu. Application of GIS in supervision and management of sewage outlets to rivers锛籎锛�. Yangtze River锛�2011锛�42锛�2锛夛細24-27. |
9 | 绁濈憸. GIS鎶�鏈湪鍏ユ渤鎺掓薄鍙g洃鐫g鐞嗕腑鐨勫簲鐢蓟J锛�. 浜烘皯闀挎睙锛� 2011锛� 42锛�2锛夛細 24-27. |
10 | Zhang Ying锛� Zhang Junxian锛� Li Hang锛� et al. Design and application of supervision and administration of sewage draining outlet in the Yellow River锛籎锛�. Yellow River锛� 2012锛� 34锛�11锛夛細 50-51. |
10 | 寮犻锛� 寮犲啗鐚紝 鏉庤埅锛� 绛�. 榛勬渤鍏ユ渤鎺掓薄鍙g洃鐫g鐞嗙郴缁熺殑璁捐涓庡疄鐜帮蓟J锛�. 浜烘皯榛勬渤锛� 2012锛� 34锛�11锛夛細 50-51. |
11 | Li Liangjun锛� Yang Zedong锛� Yu Gen. Remote sensing application in the investigation of nvironmental three waste products in Huaibei City锛籎锛�. Geology of Anhui锛� 1997锛�1锛夛細69-81. |
11 | 鏉庤壇鍐涳紝 鏉ㄥ垯涓滐紝 鍠绘牴. 閬ユ劅鎶�鏈湪娣寳甯傜幆澧冣�滀笁搴熲�濊皟鏌ヤ腑鐨勫簲鐢蓟J锛�. 瀹夊窘鍦拌川锛� 1997锛�1锛夛細69-81. |
12 | Yao Jun锛� Zeng Xiangfu锛� Yi Jianfang. Using remote sensing technology to monitor water pollution of Shanghai Suzhou River锛籎锛�. Image Technology锛� 2003锛�2锛夛細3-7锛�12. |
12 | 濮氫繆锛� 鏇剧ゥ绂忥紝 鐩婂缓鑺�.閬ユ劅鎶�鏈湪涓婃捣鑻忓窞娌虫按姹℃煋鐩戞祴涓殑搴旂敤锛籎锛�. 褰卞儚鎶�鏈紝 2003锛�2锛夛細3-7锛�12. |
13 | Wu Mingquan锛� Niu Zheng锛� Gao Shuai锛� et al. Land-sourced sewage outfalls monitoring in circum-bohai region using multi-scale remote sensing data锛籎锛�. Journal of Geo-information Science锛�2012锛�14锛�3锛夛細405-410. |
13 | 閭槑鏉冿紝 鐗涢摦锛� 楂樺竻锛� 绛�. 娓ゆ捣闄嗘簮鍏ユ捣鎺掓薄鍙g殑澶氬昂搴﹂仴鎰熺洃娴嬪垎鏋愶蓟J锛�. 鍦扮悆淇℃伅绉戝瀛︽姤锛� 2012锛�14锛�3锛夛細405-410. |
14 | Piech K R锛� Walker J E. Outfall inventory using air photo interpretation锛籎锛�.Photogrammetric Engineering锛�1972锛�38锛�9小袩-14. |
15 | Davies P锛� Charlton J. Remote sensing of coastal discharge sites using SPOT-simulation data锛籎锛�. International Journal of Remote Sensing锛� 1986锛� 7锛�6锛夛細 815-824. |
16 | Zhu Li锛� Yao Yanjuan锛� Wu Chuanqing锛� et al. Remote sensing monitoring on water quality of interior water body based on the HJ-1 Satellite multi-spectral data锛籎锛�. Geography and Geo-Information Science锛� 2010锛�26锛�2锛夛細81-84锛�113. |
16 | 鏈卞埄锛� 濮氬欢濞燂紝 鍚翠紶搴嗭紝 绛�. 鍩轰簬鐜涓�鍙峰崼鏄熺殑鍐呴檰姘翠綋姘磋川澶氬厜璋遍仴鎰熺洃娴嬶蓟J锛�. 鍦扮悊涓庡湴鐞嗕俊鎭瀛︼紝2010锛�26锛�2锛夛細81-84锛�113. |
17 | Marmorino G O锛� Smith G B锛� Miller W D锛� et al. Detection of a buoyant coastal wastewater discharge using airborne hyperspectral and infrared imagery锛籎锛�. Journal of Applied Remote Sensing锛�2010锛� 4锛�1锛夛細 043502. DOI锛� 10.1117/1.3302630 . |
18 | Nezlin N P锛� Sutula M A锛� Stumpf R P锛� et al. Phytoplankton blooms detected by SeaWiFS along the central and southern California coast锛籎锛�.Journal of Geophysical Research锛� Oceans锛� 2012锛� 117锛圕7锛�. DOI锛� 10.1029/2011JC007773 . |
19 | O'Reilly J E锛� Maritorena S锛� Mitchell B G锛� et al. Ocean color chlorophyll algorithms for SeaWiFS锛籎锛�. Journal of Geophysical Research锛� Oceans锛� 1998锛� 103锛圕11锛夛細 24937-24953. |
20 | Trinh R C锛� Fichot C G锛� Gierach M M锛� et al. Application of Landsat 8 for monitoring impacts of wastewater discharge on coastal water quality锛籎锛�. Frontiers in Marine Science锛� 2017锛� 4锛� 329. DOI锛� 10.3389/fmars.2017.00329 . |
21 | Digiacomo P M锛� Washburn L锛� Holt B锛� et al. Coastal pollution hazards in southern California observed by SAR imagery锛� stormwater plumes锛� wastewater plumes锛� and natural hydrocarbon seeps锛籎锛�. Marine Pollution Bulletin锛� 2004锛� 49锛�11-12锛夛細 1013-1024. |
22 | Gierach M M锛� Holt B锛� Trinh R锛� et al. Satellite detection of wastewater diversion plumes in Southern California锛籎锛�. Estuarine锛� Coastal and Shelf Science锛� 2017锛� 186锛� 171-182. |
23 | Pandey P C锛� Koutsias N锛� Petropoulos G P锛� et al. Land use/landcover in view of earth observation锛� data sources锛� input dimensions锛� and classifiers鈥攁 review of the state of the art锛籎锛�. Geocarto International锛� 2021锛� 36锛�9锛夛細 957-988. |
24 | Philipson Nee Ammenberg P锛� Liljeberg M锛� Lindell T. Industrial plume detection in hyperspectral remote sensing data锛籎锛�. International Journal of Remote Sensing锛�2005锛�26锛�2锛夛細295-313. |
25 | Zhang J锛� Zou T锛� Lai Y. Novel method for industrial sewage outfall detection锛� Water pollution monitoring based on web crawler and remote sensing interpretation techniques锛籎锛�. Journal of Cleaner Production锛� 2021锛� 127640. DOI锛� 10.1016/j.jclepro.2021.127640 . |
26 | Wang Guizuo锛� Meng Xianglong锛� Lang Maixian锛� et al. Thoughts and suggestions on using unmanned aerial vehicles to carry out inspection of sewage outlets into rivers锛籎锛�. Water Resources Development Research锛� 2018锛�2锛夛細27-29锛�33. |
26 | 鐜嬭吹浣滐紝 瀛熺ゥ榫欙紝 閮庡姠璐わ紝 绛�. 鍒╃敤鏃犱汉鏈哄紑灞曞叆娌虫帓姹″彛娓呮煡鐨勬�濊矾涓庡缓璁蓟J锛�. 姘村埄鍙戝睍鐮旂┒锛� 2018锛�2锛夛細 27-29锛�33. |
27 | Cui Yue. A thorough investigation of the Changjiang sewage outlet锛� UAV magnification锛� visiting to Yang Haijun锛� deputy director of center for satellite application on ecology and environment aviation remote sensing department锛籎锛�. Green Living锛�2019锛�5锛夛細24-28. |
27 | 宕旀偊. 褰绘煡闀挎睙鎺掓薄鍙� 鏃犱汉鏈烘斁澶ф嫑鈥斺�旇鍗槦鐜搴旂敤涓績鑸┖閬ユ劅閮ㄥ壇涓讳换鏉ㄦ捣鍐涳蓟J锛�. 鐜涓庣敓娲伙紝 2019锛�5锛夛細24-28. |
28 | Hong Yunfu锛� Yang Haijun锛� Li Ying锛� et al. Monitoring of water source using unmanned aerial vehicle remote sensing technology锛籎锛�. Environmental Monitoring in China锛�2015锛�31锛�5锛夛細 163-166. |
28 | 娲繍瀵岋紝 鏉ㄦ捣鍐涳紝 鏉庤惀锛� 绛�.姘存簮鍦版薄鏌撴簮鏃犱汉鏈洪仴鎰熺洃娴嬶蓟J锛�.涓浗鐜鐩戞祴锛� 2015锛�31锛�5锛夛細163-166. |
29 | Feng Lei锛� Cui Shengtao.Application of UAV remote sensing te-chnology in monitoring land source sewage in sea area锛籎锛�. Geo-matics & Spatial Information Technology锛� 2019锛�42锛�5锛夛細 107-109. |
29 | 鍐锛屽磾鑳滄稕. 鏃犱汉鏈洪仴鎰熸妧鏈湪娴峰煙鐩戞祴闄嗘簮鎺掓薄鍙d腑鐨勫簲鐢蓟J锛�.娴嬬粯涓庣┖闂村湴鐞嗕俊鎭紝 2019锛�42锛�5锛夛細107-109. |
30 | Li Xiangyu锛� Zhang Cao. High resolution aerial survey of sewage outlets in the Yellow Sea area of Dalian锛籎锛�. Technology Innovation and Application锛� 2020锛�17锛夛細 144-145. |
30 | 鏉庣繑瀹囷紝 寮犳搷. 澶ц繛榛勬捣鍦板尯鍏ユ捣鎺掓薄鍙i珮鍒嗚鲸鐜囪埅娴嬫帓鏌ワ蓟J锛�. 绉戞妧鍒涙柊涓庡簲鐢紝 2020锛�17锛夛細 144-145. |
31 | Zhang Yuanmin. Application of UAV aerial survey technology in sewage outlet investigation锛籎锛�. Bulletin of Surveying and Mapping锛� 2020锛�1锛夛細146-149锛�153. |
31 | 寮犲厓鏁�. 鏃犱汉鏈鸿埅娴嬫妧鏈湪鍏ユ捣鎺掓薄鍙f帓鏌ヤ腑鐨勫簲鐢蓟J锛�. 娴嬬粯閫氭姤锛� 2020锛�1锛夛細146-149锛�153. |
32 | Zhong Y锛� Hu X锛� Luo C锛� et al. WHU-Hi锛� UAV-borne hyperspectral with high spatial resolution 锛圚2锛� benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF锛籎锛�. Remote Sensing of Environment锛� 2020锛� 250锛� 112012. DOI锛� 10.1016/j.rse.2020.112012 . |
33 | Huang Y锛� Zhao C锛� Yang H锛� et al. Feature selection solution with high dimensionality and low-sample size for land cover classification in object-based image analysis锛籎锛�. Remote Sensing锛� 2017锛�9锛�9锛夛細 939. DOI锛� 10.3390/rs9090939 . |
34 | Girshick R锛� Donahue J锛� Darrell T锛� et al. Rich feature hierarchies for accurate object detection and semantic segmentation锛籆锛解垾Proceedings of the IEEE conference on computer vision and pattern recognition. 2014锛� 580-587. |
35 | He K锛� Zhang X锛� Ren S锛� et al. Spatial pyramid pooling in deep convolutional networks for visual recognition锛籎锛�. IEEE transactions on pattern analysis and machine intelligence锛� 2015锛� 37锛�9锛夛細 1904-1916. |
36 | Girshick R. Fast R-CNN锛籆锛解垾Proceedings of the IEEE International Conference on Computer Vision. 2015锛� 1440-1448. |
37 | Ren S锛� He K锛� Girshick R锛宔t al. Faster R-CNN锛歍owards real-time object detection with region proposal networks锛籎锛�.Advan-ces in Neural Information Processing Systems锛�2015锛�28锛�91-99. |
38 | Dai J锛� Li Y锛� He K锛� et al. R-FCN锛� Object detection via region-based fully convolutional networks锛籆锛解垾Advances in Neural Information Processing Systems. 2016锛� 379-387. |
39 | Long J锛� Shelhamer E锛� Darrell T. Fully convolutional networks for semantic segmentation锛籆锛解垾Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015锛� 3431-3440. |
40 | Lin T Y锛� Doll谩r P锛� Girshick R锛� et al. Feature pyramid networks for object detection锛籆锛解垾Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017锛� 2117-2125. |
41 | Cai Z锛� Vasconcelos N.Cascade R-CNN锛欴elving into high quality object detection锛籆锛解垾Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018锛�6154-6162. |
42 | Redmon J锛� Divvala S锛� Girshick R锛� et al. You only look once锛� Unified锛� real-time object detection锛籆锛解垾Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016锛� 779-788. |
43 | Liu W锛� Anguelov D锛� Erhan D锛� et al. SSD锛� Single shot multibox detector锛籆锛解垾European Conference on Computer Vision. Springer锛� Cham锛� 2016锛� 21-37. |
44 | Lin T Y锛� Goyal P锛� Girshick R锛� et al. Focal loss for dense object detection锛籆锛解垾Proceedings of the IEEE International Conference on Computer Vision锛�2017锛� 2980-2988. |
45 | Redmon J锛� Farhadi A. YOLO9000锛� better锛� faster锛� stronger锛籆锛解垾Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017锛� 7263-7271. |
46 | Redmon J锛� Farhadi A. Yolov3锛� An incremental improvement锛籎锛�. arXiv preprint arXiv锛氾紝 2018. |
47 | Bochkovskiy A锛� Wang C Y锛� Liao H Y M. Yolov4锛� Optimal speed and accuracy of object detection锛籎锛�. arXiv Preprint arXiv锛氾紝 2020. |
48 | Zhang S锛� Wen L锛� Bian X锛� et al. Single-shot refinement neural network for object detection锛籆锛解垾Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition锛�2018锛�4203-4212. |
49 | Law H锛� Deng J. Cornernet锛� Detecting objects as paired keypoints锛籆锛解垾Proceedings of the European Conference on Computer Vision 锛圗CCV锛夛紝 2018锛� 734-750. |
50 | Duan K锛� Bai S锛� Xie L锛� et al. Centernet锛� Keypoint triplets for object detection锛籆锛解垾Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019锛� 6569-6578. |
51 | Zhou X锛� Zhuo J锛� Krahenbuhl P. Bottom-up object detection by grouping extreme and center points锛籆锛解垾Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition锛� 2019锛� 850-859. |
52 | Li K锛� Wan G锛� Cheng G锛� et al. Object detection in optical remote sensing images锛� A survey and a new benchmark锛籎锛�. ISPRS Journal of Photogrammetry and Remote Sensing锛� 2020锛� 159锛� 296-307. |
53 | Liu Z锛� Hu J锛� Weng L锛� et al. Rotated region based CNN for ship detection锛籆锛解垾2017 IEEE International Conference on Image Processing 锛圛CIP锛�. IEEE锛� 2017锛� 900-904. |
54 | Liu W锛� Ma L锛� Chen H. Arbitrary-oriented ship detection framework in optical remote-sensing images锛籎锛�. IEEE Geoscience and Remote Sensing Letters锛� 2018锛� 15锛�6锛夛細 937-941. |
55 | Zhang Xiaodong锛� Zhang Lifei锛� Chen Guanzhou锛� et al. An itegrated model of object detection and contour extraction based on deep learning锛籎锛�. Journal of Geomatics锛� 2019锛� 44锛�6锛夛細 1-5. |
55 | 寮犳檽涓滐紝 寮犲姏椋烇紝 闄堝叧宸烇紝 绛�. 鍩轰簬娣卞害瀛︿範鐨勯仴鎰熷奖鍍忓湴鐗╃洰鏍囨娴嬪拰杞粨鎻愬彇涓�浣撳寲妯″瀷锛籎锛�. 娴嬬粯鍦扮悊淇℃伅锛� 2019锛� 44锛�6锛夛細 1-5. |
56 | Tang T锛� Zhou S锛� Deng Z锛� et al. Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining锛籎锛�. Sensors锛� 2017锛� 17锛�2锛夛細 336. DOI锛� 10.3390/s17020336 . |
57 | Tang T锛� Zhou S锛� Deng Z锛� et al. Arbitrary-oriented vehicle detection in aerial imagery with single convolutional neural networks锛籎锛�. Remote Sensing锛� 2017锛� 9锛�11锛夛細 1170. DOI锛� 10.3390/rs9111170 . |
58 | Yang Y锛� Zhuang Y锛� Bi F锛� et al. M-FCN锛� Effective fully convolutional network-based airplane detection framework锛籎锛�. IEEE Geoscience and Remote Sensing Letters锛� 2017锛� 14锛�8锛夛細 1293-1297. |
59 | Eikelboom J A J锛� Wind J锛� van de Ven E锛� et al. Improving the precision and accuracy of animal population estimates with aerial image object detection锛籎锛�. Methods in Ecology and Evolution锛� 2019锛� 10锛�11锛夛細 1875-1887. |
60 | Torney C J锛� Lloyd鈥怞ones D J锛� Chevallier M锛� et al. A comparison of deep learning and citizen science techniques for counting wildlife in aerial survey images锛籎锛�. Methods in Ecology and Evolution锛� 2019锛� 10锛�6锛夛細 779-787. |
61 | Peng J锛� Wang D锛� Liao X锛� et al. Wild animal survey using UAS imagery and deep learning锛� Modified faster R-CNN for kiang detection in Tibetan Plateau锛籎锛�. ISPRS Journal of Photogrammetry and Remote Sensing锛� 2020锛� 169锛� 364-376. |
62 | Xia G S锛� Bai X锛� Ding J锛� et al. DOTA锛� A large-scale dataset for object detection in aerial images锛籆锛解垾Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018锛� 3974-3983. |
63 | Cheng G锛� Han J锛� Zhou P锛� et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors锛籎锛�. ISPRS Journal of Photogrammetry and Remote Sensing锛� 2014锛� 98锛� 119-132. |
64 | Mundhenk T N锛� Konjevod G锛� Sakla W A锛� et al. A large contextual dataset for classification锛� detection and counting of cars with deep learning锛籆锛解垾European Conference on Computer Vision. Springer锛� Cham锛� 2016锛� 785-800. |
65 | Liu Z锛� Wang H锛� Weng L锛� et al. Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds锛籎锛�. IEEE Geoscience and Remote Sensing Letters锛� 2016锛� 13锛�8锛夛細 1074-1078. |
66 | Qi Zhou. Research on detection method of sewage outfalls in uav aerial image based on deep learning锛籇锛�. Weihai锛� Shandong University锛� 2021. |
66 | 绁佽垷. 鍩轰簬娣卞害瀛︿範鐨勬棤浜烘満鑸媿鍥惧儚鎺掓薄鍙f娴嬫柟娉曠爺绌讹蓟D锛�. 濞佹捣锛� 灞变笢澶у锛� 2021. |
67 | Zhang Chunxiao锛� Bao Yunfei锛� Ma Zhongqi锛� et al. Research progress on optical remote sensing object detection based on CNN锛籎锛�. Spacecraft Recovery & Remote Sensing锛�2020锛�41锛�6锛夛細45-55. |
67 | 寮犳槬鏅擄紝 椴嶄簯椋烇紝 椹腑绁猴紝 绛�. 鍩轰簬鍗风Н绁炵粡缃戠粶鐨勫厜瀛﹂仴鎰熺洰鏍囨娴嬬爺绌惰繘灞曪蓟J锛�. 鑸ぉ杩斿洖涓庨仴鎰燂紝 2020锛�41锛�6锛夛細45-55. |
68 | Gong Jianya锛� Xu Yue锛� Hu Xiangyun锛� et al. Status analysis and research of sample database for intelligent interpretation of remote sensing image锛籎锛�. Acta Geodaetica et Cartographica Sinica锛� 2021锛� 50锛�8锛夛細 1013-1022. |
68 | 榫氬仴闆咃紝 璁歌秺锛� 鑳$繑浜戯紝 绛�. 閬ユ劅褰卞儚鏅鸿兘瑙h瘧鏍锋湰搴撶幇鐘朵笌鐮旂┒锛籎锛�. 娴嬬粯瀛︽姤锛� 2021锛� 50锛�8锛夛細 1013-1022. |