閬ユ劅鎶�鏈笌搴旂敤 鈥衡�� 2022, Vol. 37 鈥衡�� Issue (1): 244-252.DOI: 10.11873/j.issn.1004-0323.2022.1.0244

鈥� 鑽夊湴閬ユ劅涓撴爮 鈥� 涓婁竴绡�    涓嬩竴绡�

鍩轰簬Cubist鐨勪腑鍥芥琚尯鍩熷彾缁跨礌鑽у厜鏁版嵁閲嶅缓

娌堟磥1(),杈涙檽骞�1(),寮犳櫙2,鑻楁櫒2,鐜嬫棴1,涓佽暰1,娌堣礉璐�1   

  1. 1.涓浗鍐滀笟绉戝闄㈠啘涓氳祫婧愪笌鍐滀笟鍖哄垝鐮旂┒鎵�锛屽寳浜� 100081
    2.鍥藉閬ユ劅涓績锛屽寳浜� 100036
  • 鏀剁鏃ユ湡:2021-06-16 淇洖鏃ユ湡:2021-09-29 鍑虹増鏃ユ湡:2022-02-20 鍙戝竷鏃ユ湡:2022-04-08
  • 閫氳浣滆��: 杈涙檽骞�
  • 浣滆�呯畝浠�:娌� 娲侊紙1996-锛夛紝濂筹紝瀹佸涓崼浜猴紝纭曞+鐮旂┒鐢燂紝涓昏浠庝簨鑽夊湴鐢熸�侀仴鎰熺爺绌躲�侲?mail锛�JShen_10@163.com
  • 鍩洪噾璧勫姪:
    鍥藉閲嶇偣鐮斿彂璁″垝椤圭洰鈥滆崏鍦扮⒊鏀舵敮鐩戞祴璇勪及鎶�鏈悎浣滅爺绌垛��(2017YFE0104500);鍥藉鑷劧绉戝鍩洪噾鈥滃熀浜庡叏鐢熷懡鍛ㄦ湡鍒嗘瀽鐨勫灏哄害鑽夌敻鑽夊師缁忚惀鏅纰虫敹鏀爺绌垛��(41771205);璐㈡斂閮ㄥ拰鍐滀笟鍐滄潙閮ㄥ浗瀹剁幇浠e啘涓氫骇涓氭妧鏈綋绯�,涓ぎ绾у叕鐩婃�х鐮旈櫌鎵�鍩烘湰绉戠爺涓氬姟璐逛笓椤�(Y2020YJ19)

Reconstruction of SIF Remote Sensing Data of Vegetation in China based on Cubist

Jie Shen1(),Xiaoping Xin1(),Jing Zhang2,Chen Miao2,X眉 Wang1,Lei Ding1,Beibei Shen1   

  1. 1.Institute of Agricultural Resources and Agricultural Regional Planning锛孋hinese Academy of Agricultural Sciences锛孊eijing 100081锛孋hina
    2.National Remote Sensing Center of China锛孊eijing 100036锛孋hina
  • Received:2021-06-16 Revised:2021-09-29 Online:2022-02-20 Published:2022-04-08
  • Contact: Xiaoping Xin

鎽樿锛�

鏃ュ厜璇卞鍙剁豢绱犺崸鍏夛紙Solar-Induced chlorophyll Fluorescence锛� SIF锛夋槸妞嶇墿鍦ㄥお闃冲厜鐓ф潯浠朵笅锛屽湪鍏夊悎浣滅敤杩囩▼涓彂灏勫嚭鐨勫厜璋变俊鍙凤紙650~800 nm锛夛紝SIF鐩告瘮浜庢琚寚鏁扮瓑鍙傛暟鏇磋兘鐩存帴鍦板弽鏄犳琚厜鍚堜綔鐢ㄧ殑鐩稿叧淇℃伅锛屼负澶у昂搴PP浼扮畻甯︽潵浜嗘柊鐨勯�斿緞銆備絾鐩墠鍗槦SIF鏁版嵁鎴栧瓨鍦ㄥ垎杈ㄧ巼杈冧綆鐨勪笉瓒筹紝鎴栧瓨鍦ㄦ暟鎹┖闂翠笉杩炵画鐨勫眬闄愶紝瀵逛簬搴旂敤鍒板ぇ灏哄害涓繛缁璆PP鐨勪及绠椾腑鏈変竴瀹氶毦搴︺�侽CO-2 SIF鏁版嵁鎷ユ湁杈冮珮鐨勭┖闂村垎杈ㄧ巼锛屼絾鍗存槸绌洪棿绂绘暎鏁版嵁銆傞拡瀵逛笂杩伴棶棰橈紝鐫�閲嶇爺绌跺绂绘暎鐨凮CO-2 SIF鏁版嵁杩涜杩炵画棰勬祴鐨勬柟娉曪紝鐢熸垚涓浗鈥旇挋鍙よ崏鍦扮敓鎬佺郴缁熺殑杈冮珮绮惧害杩炵画SIF鏁版嵁闆嗐�傜粨鏋滃涓嬶細閫氳繃Cubist鍥炲綊鏍戠畻娉曪紝缁撳悎MODIS鍙嶅皠鐜囨暟鎹紝姘旇薄鏁版嵁鍙婂湡鍦板埄鐢ㄧ被鍨嬶紝寤虹珛浜嗘瘡8 d鐨�0.05掳鍒嗚鲸鐜囩殑杩炵画SIF鏁版嵁闆嗭紝棰勬祴绮惧害涓�R2=0.65锛孯MSE=0.114銆傚叾涓紝瀵逛綔鐗╃被SIF棰勬祴鐨勭簿搴︽渶楂橈紝涓�R2=0.71锛孯MSE=0.117锛涘叾娆′负瀵规.鏋椾笌鑽夊湴鐨勯娴嬶紝涓よ�呯殑R2鍜孯MSE鍒嗗埆涓�0.64/0.123锛�0.60/0.112銆�

鍏抽敭璇�: 鏃ュ厜璇卞鍙剁豢绱犺崸鍏�, Cubist妯″瀷, 鏁版嵁閲嶅缓

Abstract:

Solar-Induced Chlorophyll Fluorescence 锛圫IF锛� is the spectral signal 锛�650~800 nm锛� emitted by plants in the process of photo-synthesis under sunlight conditions. SIF is more direct than vegetation index and other parameters. Reflecting the relevant infor-mation of vegetation photosynthesis锛� it brings a new way for large-scale Gross Primary Productivity锛圙PP锛塭stimation. However锛� the current satellite SIF data may have insufficient resolution or discontinuity in the data space锛� which is difficult to apply to the estimation of continuous GPP on a large scale. OCO-2 SIF data has high spatial resolution锛� but it is spatially discrete data. In response to the above problems锛� this paper focuses on the method of con-tinuous prediction of discrete OCO-2 SIF data to generate a high-precision continuous SIF data set of the China-Mongolia grassland ecosy-stem. The results are as follows锛� Through the Cubist regression tree algorithm锛� combined with MODIS reflectance data锛� meteorologi-cal data and land use types锛� a continuous SIF data set with a resolution of 0.05掳 every 8 days is established锛� and the prediction accuracy is R2= 0.65 and RMSE = 0.114. Among them锛� the accuracy of crop SIF prediction is the highest锛� with R2= 0.71 and RMSE= 0.117锛� the second is the prediction of forest and grassland锛� with R2 and RMSE of 0.64/0.123 and 0.60/0.112 respectively.

Key words: Solar-Induced chlorophyll fluorescence, Cubist model, Data reconstruction

涓浘鍒嗙被鍙�: