1 | Zhang Y锛� Guanter L锛� Berry J A锛� et al. Model-based analysis of the relationship between Sun-Induced chlorophyll Fluorescence and gross primary production for remote sensing applications锛籎锛�. Remote Sensing of Environment锛� 2016锛� 187 锛� 145-155. |
2 | Albert P C锛� Esa T锛� Jon A锛� et al. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications锛� mechanisms and challenges 锛籎锛�. Journal of experimental botany锛� 2014锛� 65锛�15锛� 锛� 4065-4095. |
3 | Frankenberg C锛� Berry J. Solar Induced chlorophyll Fluorescence锛� origins锛� relation to photosynthesis and retrieval锛籎锛�. Comprehensive Remote Sensing锛� 2018锛� 3锛�143-162. |
4 | Meroni M锛� Rossini M锛� Guanter L锛� et al. Remote sensing of Solar-Induced chlorophyll Fluorescence锛� Review of methods and applications锛籎锛�. Remote Sensing of Environment锛� 2009锛� 113锛�10锛夛細2037-2051. |
5 | Frankenberg锛� Fisher锛� J B锛� et al. New global observations of the terrestrial carbon cycle from GOSAT锛� Patterns of plant fluorescence with gross primary productivity锛籎锛�. Geophysical Research Letters锛� 2011锛� 38锛�17锛夛細 351-365. |
6 | Guanter L锛� Frankenberg C锛� Dudhia A锛宔t al. Retrieval and glo-bal assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements锛籎锛�. Remote Sensing of Environment锛� 2012锛� 121锛坣one锛夛細236-251. |
7 | Joiner J锛� Yoshida Y锛� Vasilkov A P锛� et al. Filling-in of far-red and near-Infrared solar lines by terrestrial and atmospheric effects锛� simulations and space-based observations from SCIAMACHY and GOSAT锛籎锛�. Atmospheric Measurement Techniques Discussions锛� 2012锛� 5锛�1锛夛細163-210. |
8 | K?hler P锛� Guanter L锛� Joiner J. A linear method for the retrieval of Sun-Induced chlorophyll Fluorescence from GOME-2 and SCIAMACHY data锛籎锛�. Atmospheric Measurement Techniques锛�8锛�6锛�2015-06-26锛夛紝 2015锛� 8锛�2589-2608. |
9 | Ji Menghao锛� Tang Bohui锛� Li Zhaoliang. Review of Solar-Induced chlorophyll Fluorescence retrieval methods from satellite data锛籎锛�. Remote sensing Technology And Application锛�2019锛�34锛�3锛夛細455-466. |
9 | 绾ⅵ璞紝鍞愪集鎯狅紝鏉庡彫鑹�.澶槼璇卞鍙剁豢绱犺崸鍏夌殑鍗槦閬ユ劅鍙嶆紨鏂规硶鐮旂┒杩涘睍锛籎锛�.閬ユ劅鎶�鏈笌搴旂敤锛�2019锛�34锛�3锛夛細455-466. |
10 | Li X锛� Xiao J锛� He B. Chlorophyll fluorescence observed by OCO-2 is strongly related to gross primary productivity estimated from flux towers in temperate forests锛籎锛�. Remote Sensing of Environment锛� 2018锛�204锛�659-671. |
11 | Frankenberg C锛� O'Dell C锛� Berry J锛� et al. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2锛籎锛�. Remote Sensing of Environment锛� 2014锛� 147锛�1-12. |
12 | Duveiller G锛� Cescatti A. Spatially downscaling Sun-Induced chlorophyll Fluorescence leads to an improved temporal correlation with gross primary productivity锛籎锛�. Remote Sensing of Environment锛� 2016锛� 182锛�72-89. |
13 | Yu L锛� Wen J锛� Chang C Y锛� et al. High鈥恟esolution global contiguous SIF of OCO鈥�2锛籎锛�. Geophysical Research Letters锛� 2019锛� 46锛�1449-1458. |
14 | Bishop C M. Neural networks for pattern recognition锛籑锛�. Oxford锛� Oxford University Press锛� 1995. |
15 | Zhang Y锛� Joiner J锛� Alemohammad S H锛� et al. A global spatially contiguous Solar-Induced Fluorescence 锛圕SIF锛� dataset using neural networks锛籎锛�. Biogeosciences锛� 2018锛� 15锛�19锛夛細 5779-5800. |
16 | Gentine P锛� Alemohammad S H. Reconstructed Solar-Induced Fluorescence锛� a machine learning vegetation product based on MODIS surface reflectance to reproduce GOME-2 solar-induced fluorescence锛籎锛�. Geophysical Research Letters锛� 2018锛� 45锛�7锛夛細 3136-3146. |
17 | Duveiller G锛� Filipponi F锛� Walther S锛� et al. A spatially downscaled Sun-Induced Fluorescence global product for enhanced monitoring of vegetation productivity锛籎锛�. Earth System Science Data锛� 2020锛� 12锛�2锛夛細 1101-1116. |
18 | Ma Y锛� Liu L锛� Chen R锛� et al. Generation of a global spatially continuous TanSat Solar-Induced chlorophyll Fluorescence product by considering the impact of the solar radiation intensity锛籎锛�. Remote Sensing锛� 2020锛� 12锛�13锛夛細 2167. |
19 | Huete A锛� Didan K锛� Miura T锛� et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices锛籎锛�. Remote Sensing of Environment锛� 2002锛� 83锛�1-2锛夛細195-213. |
20 | Zhengxing W锛� Chuang L锛� Alfredo H锛� et al. From AVHRR-NDVI to MODIS-EVI锛� advances in vegetation index research锛籎锛�. Acta Ecologica Sinica锛� 2003锛� 23锛�5锛夛細979-987. |
20 | 鐜嬫鍏达紝 鍒橀棷锛� Alfredo H. 妞嶈鎸囨暟鐮旂┒杩涘睍锛氫粠AVHRR-NDVI鍒癕ODIS-EVI锛籎锛�. 鐢熸�佸鎶ワ紝 2003锛�23锛�5锛夛細143-151. |
21 | Zhang C. Using MODIS vegetation index to study urban expansion and change锛籎锛�. Meteorological锛� 2006锛�32锛�10锛夛細20-26. |
21 | 寮犳槬妗�. 鐢∕ODIS妞嶈鎸囨暟鐮旂┒绂忓窞鍩庡尯绌洪棿鎵╁睍鍙樺寲锛籎锛�. 姘旇薄锛� 2006锛� 32锛�10锛夛細20-26. |
22 | Ma Rui. Research on enhanced vegetation index algorithm and its application in the ecological environmental remote sensing production subsystem锛籇锛�. Kaifeng锛� Henan University锛�2015. |
22 | 椹憺. 澧炲己妞嶈鎸囨暟绠楁硶鐨勭爺绌跺強鍏跺湪鐢熸�佺幆澧冮仴鎰熶骇鍝佺敓浜у垎绯荤粺鐨勫簲鐢蓟D锛�. 寮�灏侊細娌冲崡澶у锛�2015. |
23 | Yu Longlong锛� Luo Ze锛� Yan Baoping. Reconstruction framework of high resolution sif remote sensing dataset in regions of interest锛籎锛�. Computer Systems & Applications锛� 2019锛� 28锛�9锛夛細133-139. |
23 | 浜庨緳榫欙紝 缃楁辰锛� 闃庝繚骞�. 鍏磋叮鍖哄煙楂樺垎杈ㄧ巼鍙剁豢绱犺崸鍏夐仴鎰熸暟鎹泦閲嶅缓妗嗘灦锛籎锛�. 璁$畻鏈虹郴缁熷簲鐢紝 2019锛� 28锛�9锛夛細133-139. |
24 | Breiman L. Classification and regression trees锛籑锛�. New York锛欳hapman and Hall锛�1984. |
25 | Ma Ziqiang. Downscaling satellite-based precipitation estimates over the Oinghai-Tibetan Plateau at different temporal scales锛籇锛�. Hangzhou锛歓hejiang University锛� 2017. |
25 | 椹嚜寮�. 闈掕棌楂樺師鍦板尯鍗槦闄嶆按鏁版嵁鏃剁┖闄嶅昂搴︾爺绌讹蓟D锛�. 鏉窞锛氭禉姹熷ぇ瀛︼紝 2017. |
26 | Quinlan J R.Simplifying decision trees[J]. International Journal of Man-Machine Studies, 1987,27锛�3锛夛細221-234. |
27 | Dai S锛� Yingchun F U锛� Zhao Y锛� et al. The remote sensing model for estimating urban impervious surface percentage based on the cubist model tree锛籎锛�. Journal of Geo-Information Science锛� 2016锛�18锛�10锛夛細1399-1409. |
27 | 鎴磋垝 浠樿繋鏄� 璧佃��榫�. 鍩轰簬Cubist妯″瀷鏍戠殑鍩庡競涓嶉�忔按闈㈢櫨鍒嗘瘮閬ユ劅浼扮畻妯″瀷锛籎锛�. 鍦扮悆淇℃伅绉戝瀛︽姤锛� 2016锛�18锛�10锛夛細1399-1409. |
28 | Zhuang X J. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data锛籎锛�. Agricultural & Forest Meteorology Amsterdam Elsevier锛� 2008锛�148锛�11锛夛細1827-1847. |
29 | Gao F锛� Anderson M C锛� Kustas W P锛� et al. Retrieving Leaf Area Index from Landsat using MODIS LAI products and field measurements锛籎锛�. IEEE Geoscience & Remote Sensing Letters锛� 2014锛� 11锛�4锛夛細773-777. |
30 | Kuhn M锛� Weston S锛� Keefer C. Cubist锛� rule- and instance-based regression modeling. http锛氣垾ftp.ussg.ju.edu/CRAN/web/packages/cubist/锛�2014. |
31 | Kuhn M锛� Johnson K. Applied Predictive Modeling锛籑锛�. New York锛歋pringer锛�2013. |