Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (1): 253-261    DOI: 10.11873/j.issn.1004-0323.2022.1.0253
草地遥感专栏     
内蒙古草原叶面积指数时空格局与水热影响
沈贝贝1(),张景2,李明3,丁蕾1,王旭1,辛晓平1()
1.中国农业科学院农业资源与农业区划研究所/ 呼伦贝尔草原生态系统国家野外科学观测研究站,北京 100081
2.国家遥感中心,北京 100036
3.中国地质调查局自然资源综合调查指挥中心,北京 100055
The Spatiotemporal Pattern of Leaf Area Index and The Influence of Water and Heat in Inner Mongolia Grassland
Beibei Shen1(),Jing Zhang2,Ming Li3,Lei Ding1,Xu Wang1,Xiaoping Xin1()
1.National Hulunber Grassland Ecosystem Observation and Research Station / Institute of Agricultural Resources and Regional Planning,Chinese Academy of Agricultural Sciences,Beijing 100081,China
2.National Remote Sensing Center of China,Beijing 100036,China
3.Natural Resources Comprehensive Survey Command Center,China Geological Survey,Beijing 100055,China
 全文: PDF(4661 KB)   HTML
摘要:

叶面积指数(Leaf Area Index, LAI)是表征植被状况的重要参数,与植被的生长和变化状况密切相关。探究内蒙古草原LAI长时间序列时空格局特征及水热条件对LAI的影响,可为准确掌握内蒙古草原分布与生长状况差异提供数据支撑,对了解内蒙古草原生产能力的空间分布特征具有参考价值。基于2000~2019年GEOV2 LAI产品数据集,结合气温和降水资料,选取变化斜率、变异系数和相关性系数3个指标对内蒙古草原LAI展开分析。结果显示,内蒙古草原LAI由东北向西南递减,多年均值为1.34 m2/m2,在不同草原类型中,荒漠草原(0.28 m2/m2)<典型草原(0.96 m2/m2)<草甸草原(2.27 m2/m2)<草甸(2.60 m2/m2),且与变异系数呈反比,荒漠草原年际间波动最剧烈。近20 a内蒙古草原LAI呈波动中上升趋势(0.02 m2/m2/a),67.08%区域草原LAI与年降水显著相关,仅4.98%区域草原LAI与年均温显著相关。表明内蒙古草原LAI空间分布具有地带性特征,不同草原类型LAI之间存在明显差异,降水是内蒙古草原LAI的主要影响因素。

关键词: 叶面积指数GEOV2 LAI时空格局降水温度内蒙古草原    
Abstract:

Leaf area index (LAI) is an important parameter to characterize the vegetation condition, which is closely related to the growth and change of vegetation. The investigation of the spatiotemporal pattern of LAI in Inner Mongolia grassland over a long time series and the influence of water and heat conditions on LAI can provide data to support an accurate understanding of the differences in the distribution and growth conditions of Inner Mongolia grassland, meanwhile, it is helpful for understanding the spatial distribution characteristics of the production capacity of Inner Mongolia grassland.Based on the GEOV2 LAI product dataset from 2000 to 2019, three indicators, namely slope of variation, coefficient of variation and correlation coefficient, were selected to analyse the grassland LAI in Inner Mongolia in combination with the data of temperature and precipitation. The results show that the LAI of Inner Mongolia grassland decreases from northeast to southwest with a multi-year mean value of 1.34 m2/m2, and among different grassland types, desert grassland (0.28 m2/m22/m22/m22/m2),and is inversely proportional to the coefficient of variation,with desert grassland showing the sharpest inter-annual fluctuations. Over the past 20 years,the LAI of Inner Mongolia grassland showed an increasing trend in fluctuation(0.02 m2/m2/a),67.08% of regional grassland LAI was significantly correlated with annual precipitation,and only 4.98% of regional gras-sland LAI was significantly correlated with annual mean temperature. These indicate that the spatial distribution of grassland LAI in Inner Mongolia has zonal characteristics, and there are significant differences between different grassland types, and precipitation is the main influencing factor of grassland LAI in Inner Mongolia.

Key words: Leaf Area Index(LAI)    GEOV2 LAI    Spatiotemporal changes    Precipitation    Temperature    Inner Mongolia grassland
收稿日期: 2021-06-15 出版日期: 2022-04-08
ZTFLH:  S812  
基金资助: 国家重点研发计划项目“草地碳收支监测评估技术合作研究”(2017YFE0104500);国家自然科学基金“基于全生命周期分析的多尺度草甸草原经营景观碳收支研究”(41771205);财政部和农业农村部国家现代农业产业技术体系,中央级公益性科研院所基本科研业务费专项(Y2020YJ19)
通讯作者: 辛晓平     E-mail: 82101191163@caas.cn;xinxiaoping@caas.cn
作者简介: 沈贝贝(1992-),女,河北辛集人,博士研究生,主要从事草原生态遥感研究。E?mail:82101191163@caas.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
沈贝贝
张景
李明
丁蕾
王旭
辛晓平

引用本文:

沈贝贝,张景,李明,丁蕾,王旭,辛晓平. 内蒙古草原叶面积指数时空格局与水热影响[J]. 遥感技术与应用, 2022, 37(1): 253-261.

Beibei Shen,Jing Zhang,Ming Li,Lei Ding,Xu Wang,Xiaoping Xin. The Spatiotemporal Pattern of Leaf Area Index and The Influence of Water and Heat in Inner Mongolia Grassland. Remote Sensing Technology and Application, 2022, 37(1): 253-261.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.1.0253        http://www.rsta.ac.cn/CN/Y2022/V37/I1/253

图1  研究区地理位置及草原类型分布图审图号:GS(2021)7692
图2  研究区气象站点及LAI采样点分布图审图号:GS(2021)7692
图3  GEOV2 LAI产品精度验证结果图
图4  内蒙古草原整体及不同草原类型LAI多年均值空间分布及面积统计审图号:GS(2021)7692
图5  2000~2019年内蒙古草原及不同草原类型逐年LAI均值
图6  内蒙古草原LAI值变异系数及变化斜率分布图审图号:GS(2021)7692
草原类型均值 Mean
LAI (m2/m2变化斜率(m2/m2变异系数CV
荒漠草原0.280.0080.490
典型草原0.960.0140.365
草甸草原2.270.0280.285
草 甸2.600.0320.265
总 计1.340.0170.354
表1  不同草原类型变化斜率及变异系数
图7  内蒙古草原LAI与降水和温度相关性空间分布 审图号:GS(2021)7692
草原类型负相关

不显著

相关

正相关
P<0.01**P<0.05*P<0.05*P<0.01**
荒漠草原--19.7123.7856.51
典型草原-0.0128.4325.2246.34
草甸草原-0.0440.0226.1133.83
草甸0.050.2551.3620.9827.36
表2  不同草原类型LAI与年降水相关系数
草原类型负相关

不显著

相关

正相关
P<0.01**P<0.05*P<0.05*P<0.01**
荒漠草原0.192.8491.643.681.65
典型草原0.362.7995.621.150.09
草甸草原0.512.0997.070.320.02
草甸0.612.4695.541.240.15
表3  不同草原类型LAI与年均温相关系数
1 Chen J M, Rich P M, Gower S T, et al. Leaf area index of boreal forests: theory, techniques, and measurements[J]. Journal of Geophysical Research Atmospheres,1997,102(D24): 29429-29443. DOI:10.1029/97JD01107 .
doi: 10.1029/97JD01107
2 Huang Jingfeng, Wang Yuan, Wang Fumin, et al. Red edge characteristics and leaf Area Index estimation model using hyperspectral data for rape[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(8): 22-26.
2 黄敬峰, 王渊, 王福民, 等. 油菜红边特征及其叶面积指数的高光谱估算模型[J]. 农业工程学报, 2006, 22(8): 22-26.
3 Watson D J. Comparative and physiological studies on growth of field crops variation in net assimilation rate and Leaf Area between species and varieties and within years[J]. Annals of Botany. 1947, 11(41): 40-76.
4 Chen J M, Black T A. Defining Leaf Area index for non-flat leaves[J]. Plant, Cell and Environment. 1992, 15(4): 421-429. DOI: 10.1111/j.1365-3040.1992.tb00992.x .
doi: 10.1111/j.1365-3040.1992.tb00992.x
5 Zhang Jiahua, Fu Zongbin, Yan Xiaodong, et al. Global respondence analysis of LAI versus surface air temperature and precipitation variations[J]. Chinese Journal of Geophysics, 2002, 45(5): 631-637.
5 张佳华, 符淙斌, 延晓冬, 等. 全球植被叶面积指数对温度和降水的响应研究[J]. 地球物理学报, 2002, 45(5): 631-637.
6 Li Kaili, Jiang Jianjun, Mao Rongzheng, et al. The modeling of vegetation through Leaf Area Index by means of remote sensing[J]. Acta Ecologica Sinica, 2005, 25(6): 1491-1496.
6 李开丽, 蒋建军, 茅荣正, 等. 植被叶面积指数遥感监测模型[J]. 生态学报, 2005, 25(6): 1491-1496.
7 Myneni R B, Hoffman S, Knyazikhin Y, et al. Global products of vegetation Leaf Area and fraction absorbed PAR from year one of MODIS data[J]. Remote Sensing of Environment,2002,83(1-2):214-231. DOI: 10.1016/S0034-4257(02)00074-3 .
doi: 10.1016/S0034-4257(02)00074-3
8 Li Xinchuan, Xu Xingang, Bao Yansong, et al. Retrieving LAI of winter wheat based on sensitive vegetation index by the segmentation method[J]. Scientia Agricultura Sinica, 2012, 45(17): 3486-3496.
8 李鑫川, 徐新刚, 鲍艳松, 等. 基于分段方式选择敏感植被指数的冬小麦叶面积指数遥感反演[J]. 中国农业科学, 2012, 45(17): 3486-3496.
9 Liu F, Wang C K, Wang X C. Sampling protocols of specific Leaf Area for improving accuracy of the estimation of forest Leaf Area Index[J]. Agricultural and Forest Meteorology, 2021,298-299:108286. DOI:10.1016/j.agrformet.2020. 108286 .
doi: 10.1016/j.agrformet.2020. 108286
10 Yang P, Wu W B, Tang H J, et al. Mapping spatial and temporal variations of Leaf Area index for winter wheat in North China[J]. Agricultural Sciences in China, 2007, 6(12):1437-1443. DOI: 10.1016/S1671-2927(08)60005-X .
doi: 10.1016/S1671-2927(08)60005-X
11 Wang Yuqi, Shen Runping, Huang Anqi, et al. Spatiotemporal dynamic analysis of MODIS LAI reconstructed in different cultivation areas in China from 2001 to 2017[J]. Journal of Geo-information Science, 2021, 23(4): 658-669.
11 王宇琦, 沈润平, 黄安奇, 等. 2001~2017 年中国不同耕作区重建MODIS LAI 时空动态[J]. 地球信息科学学报, 2021, 23(4): 658-669.
12 Huang Mei, Ji Jinjun. The spatial-temporal distribution of Leaf Area Index in China: a comparison between ecosystem modeling and remote sensing reversion[J]. Acta Ecologica Sinica,2010,30(11):3057-3064.
12 黄玫, 季劲钧. 中国区域植被叶面积指数时空分布—机理模型模拟与遥感反演比较[J]. 生态学报,2010,30(11):3057-3064.
13 Lv Yuliang. Simulation of ecological and hydrological processes in a small sub-alpine dark coniferous forest catchment in western sichuan province[D]. Beijing:Chinese Academy of Forestry, 2007.
13 吕瑜良. 川西亚高山暗针叶林小流域生态水文过程耦合及模拟[D]. 北京: 中国林业科学研究院,2007.
14 Thomas N, Chase, et al. Sensitivity of a general circulation model to global changes in Leaf Area Index[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D3): 7393-7408. DOI: 10.1029/95jd02417 .
doi: 10.1029/95jd02417
15 Reygadas Y, Jensen J, Moisen G G, et al. Assessing the relationship between vegetation greenness and surface temperature through granger causality and impulse-response coefficients: a case study in mexico[J]. International Journal of Remote Sensing,2020,41(10):3761-3783. DOI:10.1080/01431161. 2019.1711241 .
doi: 10.1080/01431161. 2019.1711241
16 Shilong Piao, Fang Jingyun. Seasonal changes in vegetation activity in response to climate changes in China between 1982 and 1999[J]. Acta Geographica Sinica, 2003, 58(1): 119-125.
16 朴世龙, 方精云. 1982~1999年我国陆地植被活动对气候变化响应的季节差异[J]. 地理学报, 2003, 58(1): 119-125.
17 Wang Zheng, Yan Xiaodong, Hou Meiting. An overview of vege-tation change impacts on climate[C]∥ Beijing: Proceedings of the 27th Annual Meeting of Chinese Meteorological Society,2010.王筝,延晓冬,侯美亭. 植被对气候的反馈效应研究进展[C]∥北京:第27届中国气象学会年会论文集,2010.
18 Tian Y, Dickinson R E, Zhou L, et al. Comparison of seasonal and spatial variations of Leaf Area Index and fraction of absorbed photosynthetically active radiation from Moderate Resolution Imaging Spectroradiometer (MODIS) and common land model[J]. Journal of Geophysical Research: Atmospheres,2004,109(D01103):1-14. DOI:10.1029/2003 JD003777 .
doi: 10.1029/2003 JD003777
19 Liu Yibo, Ju Weimin, Zhu Gaolong, et al. Retrieval of Leaf Area Index for different grasslands in inner mongolia prairie using remote sensing data[J]. Acta Ecologica Sinica, 2011, 31(18) : 5159-5170.
19 柳艺博, 居为民, 朱高龙, 等. 内蒙古不同类型草地叶面积指数遥感估算[J]. 生态学报, 2011, 31(18): 5159-5170.
20 Geng Yuanbo, Dong Yunshe, Qi Yuchun. Review about the carbon cycle researches in grassland ecosystem[J]. Progress in Geography, 2004, 23(3): 74-81.
20 耿元波, 董云社, 齐玉春. 草地生态系统碳循环研究评述[J]. 地理科学进展, 2004, 23(3): 74-81.
21 Ji Hongwei. Legal regulation of Inner Mongolia Grassland ecological protection[D]. Lanzhou: Northwest Minzu University, 2011.
21 纪宏伟. 内蒙古草原生态保护的法律规制[D]. 兰州: 西北民族大学, 2011.
22 Camacho F, Cernicharo J, Lacaze R, et al. GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. part 2: validation and ontercomparison with reference products[J]. Remote Sensing of Environment, 2013, 137(2013): 310-329. DOI: 10.1016/j.rse.2013.02.030 .
doi: 10.1016/j.rse.2013.02.030
23 Morisette J T, Baret F, Privette J L. Validation of global moderate-resolution LAI products: a framework proposed within the CEOS land product validation subgroup[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7):1804-1817. DOI: 10.1109/TGRS.2006.872529 .
doi: 10.1109/TGRS.2006.872529
24 Yang Fan, Li Zhenwang, Bao Yuhai, et al. Comparation of gifferent LAI products in Hulunber Meadow Steppe[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(Sup.1): 153-160.
24 杨帆, 李振旺, 包玉海, 等. 不同叶面积指数遥感产品在呼伦贝尔草甸草原的应用对比[J]. 农业工程学报, 2016, 32(): 153-160.
25 Yang F, Yang J, Wang J, et al. Assessment and validation of MODIS and GEOV1 LAI with ground-measured data and an analysis of the effect of residential area in mixed pixel[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2015,8(2):763-774. DOI: 10.1109/ JSTARS.2014.2340452 .
doi: 10.1109/ JSTARS.2014.2340452
26 Li Zhenwang. Retrieval and validation of grassland key photosynthetic parameters using remote sensing data in Northern China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018.
26 李振旺. 中国北方草原关键光合参数遥感反演与验证方法研究[D]. 北京: 中国农业科学院, 2018
27 Peng Fei, Sun Guodong. Variation of Leaf Area index in China from 1982 to 1999 and its relationship with climate change[J]. Climatic and Environmental Research, 2017, 22(2): 162-176.
27 彭飞, 孙国栋. 1982~1999 年中国地区叶面积指数变化及其与气候变化的关系[J]. 气候与环境研究, 2017, 22 (2): 162-176.
28 Duan Limin, Li Wei, Luo Yanyun, et al. Spatiotemporal variations of vegetation Leaf Area Index and its response to topographical factors in Xilin River basin[J]. Research of Soil and Water Conservation,2019,26(3):224-231.
28 段利民,李玮,罗艳云,等. 锡林河流域植被叶面积指数时空变化特征及其对地形因子的响应[J]. 水土保持研究,2019,26(3):224-231.
29 Hu Yuetong, Wu Shuang, Feng Xianfeng, et al. Topographic correction of Leaf Area Index product derived from remote sensing data[J]. Remote Sensing Technology and Application, 2020, 35(5): 1070-1078.
29 胡月童, 武爽, 冯险峰, 等. 面向遥感叶面积指数产品的地形校正研究[J]. 遥感技术与应用, 2020, 35(5): 1070-1078.
30 Wei Jianzhou. Grassland vegetation change and its driving force in the Loess Plateau of China[D].Lanzhou: Lanzhou University, 2020.
30 魏建洲. 黄土高原草地植被变化及其驱动力分析[D]. 兰州: 兰州大学, 2020.
31 Tian H, Cao C, Chen W, et al. Response of vegetation activity dynamic to climatic change and ecological restoration programs in inner mongolia from 2000 to 2012[J]. Ecological Engineering, 2015, 82(2015): 276-289. DOI:10.1016/j.ecoleng.2015.04.098 .
doi: 10.1016/j.ecoleng.2015.04.098
[1] 陈喆,董庆,陈建平,赵文博,蒋良文,张广泽,冯涛,王栋,毕晓佳,边民,张权平,孟德利. 基于热红外遥感的川藏铁路昌都—林芝段地热异常区定量预测评价研究[J]. 遥感技术与应用, 2021, 36(6): 1368-1378.
[2] 郭俊钰,戴礼云,梁继,王琼. 典型地表对长沙主城区地表温度的影响分析[J]. 遥感技术与应用, 2021, 36(5): 1209-1222.
[3] 孙景霞,张冬有,侯宇初. 基于多源遥感数据协同反演森林地表土壤水分研究[J]. 遥感技术与应用, 2021, 36(3): 564-570.
[4] 盛夏,石玉立,丁海勇. 青藏高原GPM降水数据空间降尺度研究[J]. 遥感技术与应用, 2021, 36(3): 571-580.
[5] 刘莹,朱秀芳,徐昆,陈令仪,郭锐. 干旱对灌溉和雨养农田生态系统生产力的影响对比分析[J]. 遥感技术与应用, 2021, 36(2): 381-390.
[6] 肖尧,马明国,闻建光,于文凭. 复杂地表地表温度反演研究进展[J]. 遥感技术与应用, 2021, 36(1): 33-43.
[7] 杨玉婷,汤家法,边金虎,李爱农,雷光斌,黄平,蒋梓淳. 加尔各答市地表温度与不透水面比例季相相关性研究[J]. 遥感技术与应用, 2021, 36(1): 79-89.
[8] 汪垚,方红亮,张英慧,李思佳. 基于机载LVIS和星载GLAS波形LiDAR数据反演森林LAI[J]. 遥感技术与应用, 2020, 35(5): 1004-1014.
[9] 侯吉宇,周艳莲,刘洋. 不同叶面积指数遥感数据模拟中国总初级生产力的时空差异[J]. 遥感技术与应用, 2020, 35(5): 1015-1027.
[10] 胡月童,武爽,冯险峰,刘洋. 面向遥感叶面积指数产品的地形校正研究[J]. 遥感技术与应用, 2020, 35(5): 1070-1078.
[11] 桑宇星,刘刚,江聪,任舒艳,朱再春. 近30 a中国叶面积指数变化趋势的不确定性评估[J]. 遥感技术与应用, 2020, 35(5): 1028-1036.
[12] 刘刚,桑宇星,赵茜,江聪,朱再春. 生态系统模型模拟中国叶面积指数变化趋势及驱动因子的不确定性[J]. 遥感技术与应用, 2020, 35(5): 1037-1046.
[13] 郭利彪,刘桂香,运向军,张勇,孙世贤. 基于数据机理的植被叶面积指数遥感反演研究[J]. 遥感技术与应用, 2020, 35(5): 1047-1056.
[14] 薛华柱,王昶景,周红敏,王锦地,万华伟. 基于模拟退火算法的BP神经网络模型估算高分辨率叶面积指数[J]. 遥感技术与应用, 2020, 35(5): 1057-1069.
[15] 程雨婷,刘昭华,鹿琳琳,刘士彪,李庆亭. 一带一路沿海超大城市热岛时空特征遥感分析[J]. 遥感技术与应用, 2020, 35(5): 1197-1205.