閬ユ劅鎶�鏈笌搴旂敤 鈥衡�� 2022, Vol. 37 鈥衡�� Issue (1): 272-278.DOI: 10.11873/j.issn.1004-0323.2022.1.0272

鈥� 鑽夊湴閬ユ劅涓撴爮 鈥� 涓婁竴绡�    

鍩轰簬鏃犱汉鏈轰笌鍗槦閬ユ劅鐨勮崏鍘熷湴涓婄敓鐗╅噺鍙嶆紨鐮旂┒

鏉庢窇璐�(),寰愬ぇ浼�,鑼冨嚡鍑�,闄堥噾寮�,浣熸棴娉�,杈涙檽骞�,鐜嬫棴()   

  1. 涓浗鍐滀笟绉戝闄㈠啘涓氳祫婧愪笌鍐滀笟鍖哄垝鐮旂┒鎵�锛屽寳浜� 100081
  • 鏀剁鏃ユ湡:2021-06-15 淇洖鏃ユ湡:2021-12-14 鍑虹増鏃ユ湡:2022-02-20 鍙戝竷鏃ユ湡:2022-04-08
  • 閫氳浣滆��: 鐜嬫棴
  • 浣滆�呯畝浠�:鏉庢窇璐烇紙1996-锛夛紝濂筹紝灞变笢瀵垮厜浜猴紝纭曞+鐮旂┒鐢燂紝涓昏浠庝簨鍐滀笟璧勬簮涓庣幆澧冮仴鎰熺爺绌躲�侲?mail:82101202278@caas.cn
  • 鍩洪噾璧勫姪:
    鍥藉閲嶇偣鐮斿彂璁″垝椤圭洰(2017YFE0104500);涓ぎ绾у叕鐩婃�х鐮旈櫌鎵�鍩烘湰涓氬姟璐逛笓椤�(1610132020028)

Research of Grassland Aboveground Biomass Inversion based on UAV and Satellite Remoting Sensing

Shuzhen Li(),Dawei Xu,Kaikai Fan,Jinqiang Chen,Xuze Tong,Xiaoping Xin,Xu Wang()   

  1. Institute of Agricultural Resources and Regional Planning锛孋hinese Academy of Agricultural Sciences锛孊eijing 100081锛孋hina
  • Received:2021-06-15 Revised:2021-12-14 Online:2022-02-20 Published:2022-04-08
  • Contact: Xu Wang

鎽樿锛�

鑽夊師鐢熺墿閲忔槸璇勪环鑽夊師鐢熸�佺郴缁熷姛鑳界殑閲嶈鍙傛暟銆備负浜嗗揩閫熴�佸噯纭�佹湁鏁堝湴浼扮畻鑽夊師鍦颁笂鐢熺墿閲忥紝浠ュ懠浼﹁礉灏旇崏鍘熶负鐮旂┒鍖猴紝鍩轰簬鏃犱汉鏈哄鍏夎氨褰卞儚鍜屽崼鏄熼仴鎰燂紙Sentinel-2锛夊奖鍍忥紝閫夋嫨GNDVI銆丩CI銆丯DRE銆丯DVI銆丱SAVI銆丒VI绛�6涓琚寚鏁帮紝缁撳悎瀹炴祴鍦颁笂鐢熺墿閲忔暟鎹紝寤虹珛妞嶈鎸囨暟鍥炲綊妯″瀷锛屽苟閲囩敤鐣欎竴娉曚氦鍙夐獙璇佽繘琛岀簿搴﹁瘎浠枫�傜粨鏋滆〃鏄庯細鍩轰簬鏃犱汉鏈哄鍏夎氨褰卞儚鐨凩CI-鐢熺墿閲忓洖褰掓ā鍨嬶紙RRMSE涓�18%锛屾祴閲忓�间笌棰勬祴鍊�R2涓�0.70锛夊拰NDRE-鐢熺墿閲忔ā鍨嬶紙RRMSE涓�18%锛屾祴閲忓�间笌棰勬祴鍊�R2杈惧埌0.71锛夌簿搴﹂珮浜庡叾浠栨琚寚鏁板洖褰掓ā鍨嬶紱鍩轰簬鏃犱汉鏈哄鍏夎氨褰卞儚鐨勭敓鐗╅噺鈥旀琚寚鏁版ā鍨嬶紙RRMSE鍧囦綆浜�22%锛夋ā鎷熺簿搴﹀潎浼樹簬鍩轰簬Sentinel-2褰卞儚鐨勭敓鐗╅噺鈥旀琚寚鏁版ā鍨嬶紙RRMSE鍧囬珮浜�25%锛夛紝鍙互鏇寸簿纭湴鍙嶆紨鑽夊師鍦颁笂鐢熺墿閲忥紝鐮旂┒缁撴灉鍙负鑽夊師鐢熺墿閲忕簿鍑嗗弽婕旀彁渚涚瀛︽柟娉曞拰渚濇嵁銆�

鍏抽敭璇�: 鏃犱汉鏈�, Sentinel?2, 鍦颁笂鐢熺墿閲�, 绾㈣竟, 妞嶈鎸囨暟

Abstract:

Grassland biomass is an important parameter to evaluate the grassland ecosystem function. To estimate the grassland aboveground biomass rapidly锛� accurately and effectively锛� six vegetation indices 锛圙NDVI锛� LCI锛� NDRE锛� NDVI锛� OSAVI and EVI锛� were selected and calculated based on UAV multi-spectral images and satellite remote sensing 锛圫entinel-2锛� images锛� combined with the ground measured biomass data. The vegetation index regression model was established锛� and the precision was verified by the left one method. The results showed that the accuracy of LCI-biomass regression model 锛圧RMSE = 18%锛� the measured and predicted R2 = 0.70锛� and NDRE-biomass model 锛圧RMSE = 18%锛� the measured and predicted R2 = 0.71锛� based on UAV multi-spectral images was higher than that of other vegetation -biomass models. The biomass-vegetation index models based on UAV multi-spectral images 锛圧RMSE lower than 22%锛� have better simulation accuracy than Sentinel-2 biomass-vegetation index models 锛圧RMSE higher than 25%锛夛紝 which can more accurately retrieve the aboveground biomass of Hulunbuir grassland. The results can provide scientific methods and basis for accurate retrieval of grassland biomass.

Key words: UAV, Sentinel-2, Aboveground biomass, Red edge, Vegetation index

涓浘鍒嗙被鍙�: