1 | Yuan Cui. Applied research on radar altimetry over inland waters锛籇锛�. Beijing锛� The University of Chinese Academy of Sciences 锛圛nstitute of Remote Sensing and Digital Earth锛夛紝2017. |
1 | 琚佺繝. 鍩轰簬闆疯揪楂樺害璁$殑鍐呴檰姘翠綋搴旂敤鐮旂┒锛籇锛�.鍖椾含锛氫腑鍥界瀛﹂櫌澶у锛堜腑鍥界瀛﹂櫌閬ユ劅涓庢暟瀛楀湴鐞冪爺绌舵墍锛夛紝2017. |
2 | Haddeland I锛� Heinke J锛� Biemans H锛� et al. Global water resources affected by human interventions and climate change锛籎锛�. Proc Natl Acad Sci USA锛� 2014锛� 111锛�9锛夛細3251-3256. |
3 | Jiang L锛� Nielsen K锛� Dinardo S锛� et al. Evaluation of Sentinel-3 SRAL SAR altimetry over Chinese rivers锛籎锛�. Remote Sensing of Environment锛� 2020锛� 237. DOI锛�10.1016/j.rse.2019. 111546 |
4 | Li Jiazhen锛� Guo Xinlei锛� Gong Tongliang锛� et al. A method estimating natural runoff in regions with none or less data锛籎锛�. Journal of Hydraulic Engineering锛� 2018锛� 49锛�11锛夛細1420-1428. |
4 | 鏉庣敳鎸紝 閮柊钑撅紝 宸╁悓姊侊紝绛�. 鏃犺祫鏂欐垨灏戣祫鏂欏尯娌虫祦娴侀噺鐩戞祴涓庡畾閲忓弽婕旓蓟J锛�. 姘村埄瀛︽姤锛� 2018锛� 49锛�11锛夛細1420-1428. |
5 | Ma Jin锛� Lu Shanlong锛� Qi Jianguo锛� et al. Research of river discharge estimation model based on remote sensing in lack of hydrological data area锛籎锛�. Science of Surveying and Mapping锛�2019锛�44锛�5锛夛細188-194. |
5 | 椹触锛屽崲鍠勯緳锛岄綈寤哄浗锛岀瓑.姘存枃璧勬枡缂轰箯鍖烘渤娴佹祦閲忛仴鎰熶及绠楁ā鍨嬬爺绌讹蓟J锛�.娴嬬粯绉戝锛�2019锛�44锛�5锛夛細184-190. |
6 | Shanlong L U锛� Bingfang W U锛� Yan N锛� et al. Progress in river runoff monitoring by remote sensing锛籎锛�. Advances in Earth Science锛� 2010锛� 25锛�8锛夛細820-826. |
7 | Wang Hong锛� Sun Fubao锛� Yang Tao锛� et al. Application of Jason_2 satellite altimetry data to water level monitoring in the middle reaches of the Yangtze River锛籎锛�. Ecology and Environmental Monitoring of Three Gorges锛�2018锛�3锛�3锛夛細48-54. |
7 | 鐜嬬孩锛� 瀛欑瀹濓紝 鏉ㄦ稕锛岀瓑. Jason_2鍗槦娴嬮珮鏁版嵁鍦ㄩ暱姹熶腑娓告按浣嶇洃娴嬩腑鐨勫簲鐢蓟J锛�. 涓夊场鐢熸�佺幆澧冪洃娴嬶紝2018锛�3锛�3锛夛細48-54. |
8 | He Fei锛� Liu Zhaofei锛� Yao Zhijun. Evaluation of the monitoring accuracy of lake water level by the Jason-2 Altimeter satellite锛籎锛�.Journal of Geo-Information Science锛�2020锛�22锛�3锛夛細164-174. |
8 | 浣曢锛屽垬鍏嗛锛� 濮氭不鍚�. Jason-2娴嬮珮鍗槦瀵规箹娉婃按浣嶇殑鐩戞祴绮惧害璇勪环锛籎锛�. 鍦扮悆淇℃伅绉戝瀛︽姤锛�2020锛�22锛�3锛夛細164-174. |
9 | Leon J G锛� Calmant S锛� Seyler F锛� et al. Rating curves and estimation of average water depth at the upper Negro River based on satellite altimeter data and modeled discharges锛籎锛�. Journal of Hydrology锛� 2006锛� 328锛�3-4锛夛細481-496. |
10 | Guo Jinyun锛� Chang Xiaotao锛� Sun Jialong. Waveform retracking of satellite radar altimeter and applications锛籑锛�. Beijing锛歋urveying and Mapping Press锛� 2013. |
10 | 閮噾杩愶紝 甯告檽娑涳紝 瀛欎匠榫�. 鍗槦闆疯揪娴嬮珮娉㈠舰閲嶅畾鍙婂簲鐢蓟M锛�. 鍖椾含锛氭祴缁樺嚭鐗堢ぞ锛� 2013. |
11 | Wingham D J锛� Rapley C G锛� Griffiths H D. New Techniques in Satellite Altimeter Tracking Systems锛籆锛解垾 IGARSS 86 Symposium. 1986. |
12 | Jain M锛� Andersen O B锛� Dall J锛� et al. Sea surface height determination in the Arctic using Cryosat-2 SAR data from primary peak empirical retrackers锛籎锛�. Advances in Space Research锛� 2015锛� 55锛�1锛夛細40-50. |
13 | Hwang C锛� Guo J锛� Deng X锛� et al. Coastal gravity anomalies from retracked Geosat/GM altimetry锛� Improvement锛� limitation and the role of airborne gravity data锛籎锛�. Journal of Geodesy锛� 2006锛� 80锛�4锛夛細204-216. |
14 | Cretaux J F锛� Nielsen K锛� Frappart F锛� et al. Hydrological Applications of Satellite AltimetryRivers锛� Lakes锛� Man-Made Reservoirs锛� Inundated Areas锛籑锛�. CRC Press锛�2017. |
15 | Yue H锛� Liu Y锛� Wei J. Dynamic change and spatial analysis of Great Lakes in China based on hydroweb and landsat data锛籎锛�. Arabian Journal of Geosciences锛� 2021锛� 14锛�149锛�. DOI锛�10.1007/s12517-021-06518-4 |
16 | Keys T A锛� Scott D T. Monitoring volumetric fluctuations in tropical lakes and reservoirs using satellite remote sensing锛籎锛�. Lake and Reservoir Management锛� 2018锛� 34锛�2锛夛細154-166. |
17 | Dka B锛� Hla B锛� Ebc D锛� et al. Estimating discharges for poorly gauged river basin using ensemble learning regression with satellite altimetry data and a hydrologic model锛籎锛�. Advances in Space Research锛� 2019锛�68锛�2锛夛細607-618. |
18 | Rai A K锛� Gaurav K. Satellite altimeter to estimate discharge of the Ganga River锛籆锛解垾 EGU General Assembly 2021锛�2021. |
19 | Jamro S锛� Naseer T锛� Zaidi A锛� et al. A comparative analysis of altimetry derived water levels with in-situ Gauge data on river indus锛籆锛解垾 IGARSS 2019-2019 IEEE International Geo-science and Remote Sensing Symposium. IEEE锛� 2019. |
20 | Silva J S D锛� Calmant S锛� Seyler F锛� et al. Water levels in the Amazon basin derived from the ERS 2 and ENVISat radar altimetry missions锛籎锛�. Remote Sensing of Environment锛� 2010锛� 114锛�10锛夛細2160-2181. |
21 | Cretaux J F锛� Jelinski W锛� Calmant S锛� et al. SOLS锛� a lake database to monitor in the Near Real Time water level and storage variations from remote sensing data锛籎锛�. Advances in Space Research锛� 2011锛� 47锛�9锛夛細1497-1507. |
22 | Cassandra N锛� Fr茅d茅ric Frappart锛� Diepkil茅 Adama Telly锛� et al. Evolution of the performances of radar altimetry missions from ERS-2 to Sentinel-3A over the Inner Niger Delta锛籎锛�. Remote Sensing锛� 2018锛� 10锛�6锛夛細833.doi锛� 10.3390/rs10060833 |
23 | Schwatke C锛� Dettmering D锛� Bosch W锛� et al. DAHITI-an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry锛籎锛�. Hydrology & Earth System Sciences锛� 2015锛� 19锛�10锛夛細4345-4364. |
24 | Kalman R E. A New approach To linear filtering and prediction problems锛籎锛�. Journal of Basic Engineering锛� 1960锛� 82D锛�35-45. |
25 | Coss S锛� Durand M锛� Yi Y锛� et al. Global river radar altimetry time series 锛圙RRATS锛夛細 new river elevation earth science data records for the hydrologic community锛籎锛�. Earth System ence Data Discussions锛� 2020锛�12锛�1锛夛細137-150. |
26 | Allen G H, Pavelsky T. Characterizing worldwide patterns of fluvial geomorphology and hydrology with the Global River Widths from Landsat (GRWL) database[C]鈭� American Geophysical Union, Fall Meeting, 2015(1): H41E-1360. |
27 | Allen G H锛� Pavelsky T M. Global extent of rivers and streams锛籎锛�. Science锛� 2018锛�361锛�6402锛夛細 585-587. |
28 | Hydrology Bureau of the Ministry of Water Resources of the People's Republic of China. Hydrology Yearbook of the People's Republic of China [M]. Beijing: Hydrology Bureau of the Ministry of Water Resources of the People's Republic of China, 2005-2018. |
28 | 涓崕浜烘皯鍏卞拰鍥芥按鍒╅儴姘存枃灞�.涓崕浜烘皯鍏卞拰鍥芥按鏂囧勾閴碵M].鍖椾含:涓崕浜烘皯鍏卞拰鍥芥按鍒╅儴姘存枃灞�,2005-2018. |
29 | Huang Q锛� Long D锛� Du M锛� et al. An improved approach to monitoring Brahmaputra River water levels using retracked altimetry data锛籎锛�. Remote Sensing of Environment锛� 2018锛� 211锛�112-128. |
30 | Pekel J F锛� Cottam A锛� Gorelick N锛宔t al. High-resolution mapping of global surface water and its long-term changes锛籎锛�. Nature锛� 2016锛�540锛�418-422 |
31 | Kittel C锛� Jiang L锛� Tttrup C锛� et al. Sentinel-3 radar altimetry for river monitoring-a catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B[J]. Hydrology and Earth System Sciences锛� 2020锛�25锛�333-357. |
32 | Villadsen H锛� Deng X锛� Andersen O B锛� et al. Improved inland water levels from SAR altimetry using novel empirical and phy-sical retrackers锛籎锛�. Journal of Hydrology锛�2016锛�537锛�234-247. |
33 | Gao Xiang锛� Pang Xiaoping锛� Ji Qing. Spatiotemporal variation of sea ice freeboard in the antarctic weddell sea based on CryoSat-2 altimeter data锛籎锛�. Geomatics and Information Science of Wuhan University锛�2021锛�46锛�1锛夛細125-132. |
33 | 楂樼繑锛� 搴炲皬骞筹紝 瀛i潚. 鍒╃敤CryoSat-2娴嬮珮鏁版嵁鐮旂┒鍗楁瀬濞佸痉灏旀捣娴峰啺鍑烘按楂樺害鏃剁┖鍙樺寲锛籎锛�. 姝︽眽澶у瀛︽姤?淇℃伅绉戝鐗堬紝2021锛�46锛�1锛夛細 125-132. |
34 | Jin Xiang锛� Hui Li锛� Zhao Jiayang锛宔t锛宎l. Inland water level measurement from spaceborne laser altimetry锛� Validation and comparison of three missions over the Great Lakes and lower Mississippi River锛籎锛�.Journal of Hydrology锛�2021.DOI锛�10.1016/ j.jhydrol.2021.126312 . |
35 | Sorkhabi O M锛� Asgari J锛� Amiri-Simkooei A. Wavelet decomposition and deep learning of altimetry waveform retracking for Lake Urmia water level survey锛籎锛�. Marine Georesources & Geotechnology锛� 2021锛�1-11. |
36 | Bogning S锛� Frappart F锛� Paris A锛宔t al.Hydro-climatology study of the Ogoou茅 River basin using hydrological modeling and satellite altimetry锛籎锛�.Advances in Space Research锛�2021锛�672-690. |