Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (1): 8-16    DOI: 10.11873/j.issn.1004-0323.2022.1.0008
青促会十周年专栏     
小卫星大气微波探测仪及其应用模拟研究
王振占1,2(),孙艺玲1,2(),王文煜1,2,张兰杰1,2,张子瑾1,2,李彬1,2,董晓龙1,2,张升伟1,2
1.中国科学院国家空间科学中心微波遥感技术重点实验室,北京 100190
2.中国科学院国家空间科学中心,北京
3.中国科学院大学,北京 100049
4.北京信息科技大学信息与通信工程学院,北京 100101
Simulation Studies on the Applications of Small-satellite-based Atmospheric Microwave Sounder (SAMS)
Zhenzhan Wang1,2(),Yiling Sun1,2(),Wenyu Wang1,2,Lanjie Zhang1,2,Zijin Zhang1,2,Bin Li1,2,Xiaolong Dong1,2,Shengwei Zhang1,2
1.Key Laboratory of Microwave Remote Sensing Technology,Chinese Academy of Sciences,Beijing 100190,China
2.National Space Science Center,Chinese Academy of Sciences,Beijing 100190,China
3.University of Chinese Academy of Sciences,Beijing 100049,China
4.School of Information& Communication Engineering Beijing Information Science And Technology University,Beijing 100101,China
 全文: PDF(3551 KB)   HTML
摘要:

小卫星大气微波探测仪技术是目前微波遥感技术的一个研究热点。通过研制一台小卫星大气微波探测仪(以下简称大气微波探测仪,英文简称SAMS)并搭载在我国的商业小卫星上,实现对大气温湿度、极端天气和降雨的快速测量。介绍了SAMS的应用方面设计的特点,并结合目前的灵敏度测试数据,分析了在轨应用性能,尤其是在海面气压、大气湿路径延迟反演方面小卫星微波探测仪提供了一种新型灵活的探测手段,同时也对载荷在大气温度和湿度廓线探测常规的探测能力方面也进行了总结和分析,为卫星数据的应用和开发打下基础。

关键词: 小卫星大气微波探测仪大气温度廓线大气湿度廓线海面气压反演湿路径延迟反演    
Abstract:

The technology of small satellite atmospheric microwave sounder is currently a research hotspot of microwave remote sensing technology. In this paper, a small Satellite Atmospheric Microwave Sounder (SAMS) has been developed and planned to be carried on commercial small satellites to achieve rapid measurement of atmospheric temperature and humidity profiles, extreme weather and rainfall. This paper introduces the characteristics of SAMS application design, combined with the current sensitivity test data, analyzes the on-orbit application performance, especially provides a new kind of flexible means of detection for sea surface pressure and atmospheric humidity path delay. At the same time, this paper also summarizes and analyzes the conventional detection capabilities of atmospheric temperature and humidity profile retrieval, laying a foundation for the application and development of satellite data.

Key words: Small-satellite-based Atmospheric Microwave Sounder    Atmospheric temperature profile    Atmospheric humidity profile    Sea surface pressure    Wet path delay retrieving
收稿日期: 2021-02-08 出版日期: 2022-04-08
ZTFLH:  TP73  
基金资助: 科工局民用航天背景型号项目“微小卫星大气微波探测有效载荷及应用技术”(D040301)
通讯作者: 孙艺玲     E-mail: wangzhenzhan@mirslab.cn;sunyl95@163.com
作者简介: 王振占(1969-),男,河北青龙人,研究员,主要从事微波遥感定标、定量反演与应用技术研究。E?mail: wangzhenzhan@mirslab.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王振占
孙艺玲
王文煜
张兰杰
张子瑾
李彬
董晓龙
张升伟

引用本文:

王振占,孙艺玲,王文煜,张兰杰,张子瑾,李彬,董晓龙,张升伟. 小卫星大气微波探测仪及其应用模拟研究[J]. 遥感技术与应用, 2022, 37(1): 8-16.

Zhenzhan Wang,Yiling Sun,Wenyu Wang,Lanjie Zhang,Zijin Zhang,Bin Li,Xiaolong Dong,Shengwei Zhang. Simulation Studies on the Applications of Small-satellite-based Atmospheric Microwave Sounder (SAMS). Remote Sensing Technology and Application, 2022, 37(1): 8-16.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.1.0008        http://www.rsta.ac.cn/CN/Y2022/V37/I1/8

序号项目技术指标
1频率/GHz89、118、166、183
2空间分辨率

89/118 GHz频段空间分辨率为14 km(天底点)

166/183 GHz空间分辨率为8 km(天底点)

3刈幅宽度1 100 km(轨道高度400 km)
4灵敏度0.5~2.5 K
5采样点数

全空间采样,变速扫描采样点数为210个/每条扫描线

匀速扫描采样点数为230个/每条扫描线

6星上定标2个(常温定标源、冷空背景)
7通道数18
8扫描周期

变速扫描状态:2 800±10 ms

匀速扫描状态:3 000±10 ms

9数据率≤30 kbps
10定标精度≤1.5 K
11质量<20 kg
12体积约500 mm(长)×260 mm(宽)×300 mm(高)
13功耗<90 W
表1  SMAS的主要系统指标
图1  大气微波探测仪(SAMS)样机
通道

中心频率

/GHz

极化

带宽

/MHz

频率稳定度/MHz动态范围/K

实测灵

敏度/K

189H1 500303~3400.4
2118.75±0.08(30)H60303~3401.5
3118.75±0.2(60)H100303~3401.1
4118.75±0.4(100)H200303~3400.9
5118.75±0.8(180)H200303~3400.7
6118.75±1.1(220)H300303~3400.7
7118.75±1.6(300)H300303~3400.7
8118.75±2.1(380)H300303~3400.7
9118.75±3.0(490)H300303~3400.8
10118.75±3.6(600 mb)H500303~3400.7
11118.75±4.3(700 mb)H500303~3400.6
12118.75±4.9(800 mb)H500303~3400.6
13166.0(表面)V1 500503~3400.6
14183.31±1H500303~3400.7
15183.31±1.8H1 000303~3400.6
16183.31±3H1 000303~3400.7
17183.31±4.5H1 500303~3400.6
18183.31±7H1 500303~3400.6
表2  SAMS的通道设置及其主要技术指标
图2  SAMS的氧气权重函数
图3  SAMS的水汽通道权重函数
图4  SAMS的定标黑体
图5  仿真流程图
图6  在±2°以内所有角度数据反演的水汽含量和湿路径延迟初步结果
图7  在±15°以内所有角度数据反演的水汽含量初步结果
图8  湿度廓线随压强的变化
图9  温度廓线随压强的变化
图10  海面反演结果与探空数据的对比
1 Wang Jing. Research on the key technology of miniaturized microwave radiometers for microsatellites[D]. Beijing:University of Chinese Academy of Sciences(National Space Science Center, Chinese Academy of Sciences),2019 [王婧. 基于微小卫星的小型化微波辐射计关键技术研究[D].北京:中国科学院大学(中国科学院国家空间科学中心),2019.]
2 Blackwell W J. New CubeSat observing capabilities for microwave atmospheric sensing[C]∥ Sensors, Systems, and Next-Generation Satellites XXII,Berlin,2018,10785:1078504.DOI: 10.1117/12.2324319 .
doi: 10.1117/12.2324319
3 Zhou Y, Shahroudi N, Zhu T, et al. A preliminary assessment of the value and impact of multiple configurations of constellations of EON-MW, a proposed 12U microwave sounder CubeSat for global NWP[J].Tellus A: Dynamic Meteorology and Oceanography,2021, 73(1):1-26.DOI: 10.1080/16000870.2020.1857143 .
doi: 10.1080/16000870.2020.1857143
4 Reising S C, Berg W, Chandrasekar V, et al. Enabling CubeSat constellations to improve revisit times of microwave sounder/imagers: the TEMPEST-D mission providing global atmospheric science observations for nearly three years[C]∥Sensors,Systems,and Next-Generation Satellites XXV. SPIE Online,2021,11858:1185816. DOI:10.1117/12.2599571 .
doi: 10.1117/12.2599571
5 Goncharenko Y V, Berg W, Reising S C, et al. Design and analysis of CubeSat microwave radiometer constellations to observe temporal variability of the atmosphere[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14:11728-11736. DOI:10.1109/JSTARS. 2021.3128069 .
doi: 10.1109/JSTARS. 2021.3128069
6 Blackwell B, Clark K, Cousins D, et al. New capabilities for all-weather microwave atmospheric sensing using CubeSats and constellations[C]∥ AIAA/USU Conference on Small Satellites, Logan,2018:262.
7 Blackwell W, Allen G, Galbraith C, et al. MicroMAS: A first step towards a nanosatellite constellation for global storm observation[C]∥AIAA/USU Conference on Small Satellites, Logan,2013:120.
8 Reising S, Gaier T C, Kummerow C, et al. Temporal experiment for storms and tropical systems technology demonstration (TEMPEST-D) mission: enabling time-resolved cloud and precipitation observations from 6U-class satellite constellations [C]∥AIAA/USU Conference on Small Satellites, Logan,2017:78.
9 Blackwell W J. Radiometer development for small satellite microwave atmospheric remote sensing[C]∥IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth,2017:267-270.DOI: 10.1109/IGARSS.2017. 8126946 .
doi: 10.1109/IGARSS.2017. 8126946
10 Lim B. Small satellite developments[C]∥2016 IEEE International Geoscience and Remote Sensing Symposium(IGARSS),Beijing,2016:5543-5545.DOI: 10.1109/IGARSS.2016. 7730446 .
doi: 10.1109/IGARSS.2016. 7730446
11 Blackwell W J. Technology development for small satellite microwave atmospheric remote sensing[C]∥IEEEMTT-S International Microwave Symposium(IMS),Honolulu,2017:222-225.DOI:10.1109/MWSYM.2017.8059079 .
doi: 10.1109/MWSYM.2017.8059079
12 Zhang Z, Dong X, Liu L, et al. Retrieval of barometric pressure from satellite passive microwave observations over the Oceans[J]. Journal of Geophysical Research: Oceans,2018,123(6):4360-4372.DOI: 10.1029/2018JC013847 .
doi: 10.1029/2018JC013847
13 Wang Z Z, Zhang D H. Simulation on retrieving of atmospheric wet path delay by microwave radiometer on HY-2 satellite[C]∥China-Japan Joint Microwave Conference (CJMW),Shanghai,2008:2165-4727.
14 Zhang Yunhua, Xu Ke, Li Maotang, et al. Study on spaceborne topography mapping altimeter[J]. Remote Sensing Te-chnology and Application,1999,14(1):11-14.
14 张云华, 许可, 李茂堂,等. 星载三维成像雷达高度计研究[J]. 遥感技术与应用,1999,14(1):11-14.
15 Zhang Shengwei, Wang Zhenzhan, Sun Maohua, et al. The design and development of advanced microwave atmospheric sounder onboard FY-3 satellite[J]. Engineering Sciences,2013,15(7):81-87.
15 张升伟, 王振占, 孙茂华, 等. 风云三号卫星先进微波大气探测仪系统设计与研制[J].中国工程科学,2013,15(7):81-87.
16 Hu H, Weng F Z, Han Y, et al. Remote sensing of tropical cyclone thermal structure from satellite microwave sounding instruments: Impacts of background profiles on retrievals[J].Journal of Meteorological Research, 2019, 33(1): 89–103. DOI: 10.1007/s13351-019-8094-1 .
doi: 10.1007/s13351-019-8094-1
17 Weng F, Hu H, Han Y. Comparing the thermal structures of tropical cyclones derived from ATMS and MWHS[C]∥IEEE International Geoscience and Remote Sensing Symposium(IGARSS),Yokohama,2019:7680-7682.DOI:10.1109/ IGARSS.2019.8899844 .
doi: 10.1109/ IGARSS.2019.8899844
18 Blackwell W, Allan G, Allen G, et al. Microwave radiometer technology acceleration mission (MiRaTA): Advancing weather remote sensing with nanosatellites[C]∥AIAA/USU Conference on Small Satellites,Logan,2014:7.
19 Chevallier F. Sampled databases of 60-level atmospheric profiles from the ECMWF analyses[R]. NWP SAF Report No . NWPSAF-EC-TR-004, 2002:27.
20 Liebe H J, Hufford G A, Cotton M G. Propagation modeling of moist air and suspended water/ice particles at frequencies below 1 000 GHz[C]∥ Atmospheric Propagation Effects Th-rough Natural and Man-Made Obscurants for Visible to MM-Wave Radiation,Palma de Mallorca, 1993:3.1–3.10.
21 Liu Q, Weng F, English S j. An improved fast microwave water emissivity model[J]. IEEE Transactions on Geoscience and Remote Sensing,2012,49(4):1238-1250. DOI: 10.1109/TGRS.2010.2064779 .
doi: 10.1109/TGRS.2010.2064779
22 Wang Zhenzhan, Bao Jinghua, Li Yun,et al. Study on retrieval algorithm of ocean parameters for the HY-2 scanning microwave radiometer[J].Engineering Sciences,2014,16(6):70-82.
22 王振占,鲍靖华,李芸,等.海洋二号卫星扫描辐射计海洋参数反演算法研究[J].中国工程科学,2014,16(6):70-82.
23 Borbas E, Seemann S W, Huang H L, et al. Global profile training database for satellite regression retrievals with estimates of skin temperature and emissivity[C]∥International ATOVS Study Conference, Beijing,2005:763-770.
24 Nash J, Oakley T, Vömel H, et al. WMO intercomparison of high quality radiosonde systems[C]∥World Meteorological Organization, Instruments and Observing methods,Yangjiang,2010:107: 485.
25 Boukabara S A, Clough S A, Hoffman R N. MonoRTM: A monochromatic radiative transfer model for microwave and laser calculation[C]∥ Programs and Abstracts:Specialist Meeting Microwave Remote Sensing, 2001:158.
26 Mathur A K, Gangwar R K, Gohil B S, et al. Humidity profile retrieval from SAPHIR on-board the Megha-Tropiques[J].Current Science,2013,104(12): 1650-1655.
27 Zhang Z, Dong X, Liu L, et al. Retrieval of barometric pressure from satellite passive microwave observations over the oceans[J]. Journal of Geophysical Research: Oceans,2018,123(6):4360-72.DOI: 10.1029/2018JC013847 .
doi: 10.1029/2018JC013847
28 Millán L, Lebsock M, Livesey N, et al. Differential absorption radar techniques: surface pressure[J]. Atmospheric Measurement Techniques,2014,7(11):3959-3970.DOI:10.5194/ amt-7-3959-2014 .
doi: 10.5194/ amt-7-3959-2014
[1] 马剑英,朱迪. 基于星载宽刈幅散射计的海面舰船目标检测方法与识别[J]. 遥感技术与应用, 2021, 36(3): 663-672.
[2] 王振占,董帅,殷晓斌,陆浩,李彬. 有源微波冷噪声源的原理及其应用分析[J]. 遥感技术与应用, 2017, 32(2): 247-254.
[3] 金梦彤,刘浩,武林,. 星载一维综合孔径微波辐射计海洋盐度探测任务仿真及外部误差源分析[J]. 遥感技术与应用, 2017, 32(2): 346-355.
[4] 杨白雪,杜永明,肖青,历华,曹彪,柳钦火. 蒙特卡洛方法研究积分球测量发射率的影响因素#br#[J]. 遥感技术与应用, 2017, 32(1): 149-157.
[5] 高飞, 张俊荣, 宋宁华. 星载微波成像仪天线扫描中动量补偿仿真的方法[J]. 遥感技术与应用, 1999, 14(2): 10-14.
[6] 刘新平, 高英俊, 鲁昭, 吴磊. 遥感器小型化技术研究[J]. 遥感技术与应用, 1999, 14(3): 30-33.
[7] 李靖, 姜景山, 李茂堂 . 微波辐射计定标[J]. 遥感技术与应用, 1999, 14(1): 1-4.
[8] 邢廷, 龚惠兴 . 大气探测傅里叶变换光谱仪[J]. 遥感技术与应用, 1999, 14(1): 5-10.
[9] 张云华, 许可, 李茂堂, 李靖, 刘和光, 王新中 . 星载三维成像雷达高度计研究[J]. 遥感技术与应用, 1999, 14(1): 11-14.
[10] 田庆久. 机载成像光谱遥感器场地外定标规范的初步研究 [J]. 遥感技术与应用, 1999, 14(1): 15-19.
[11] 董晓龙, 吴季, 孙波, 姜景山 . 雷达散射计的近场绝对校准技术[J]. 遥感技术与应用, 1999, 14(1): 25-28.
[12] 许可, 周宁, 李茂堂. 星载海洋雷达高度计信号处理实时仿真 [J]. 遥感技术与应用, 1999, 14(1): 20-24.
[13] 高 飞 张俊荣. 星载微波成像仪接收通道的仿真研究[J]. 遥感技术与应用, 1998, 13(3): 24-29.
[14] 崔敦杰. 地球静止轨道卫星有效载荷可优选凝视型光学遥感器[J]. 遥感技术与应用, 1998, 13(3): 30-37.
[15] 江月松 尤红建 李树楷. 机载激光扫描测距仪的误差分析[J]. 遥感技术与应用, 1998, 13(2): 1-9.