遥感技术与应用 2022, Vol. 37 Issue (1): 8-16 DOI: 10.11873/j.issn.1004-0323.2022.1.0008 |
青促会十周年专栏 |
|
|
|
|
小卫星大气微波探测仪及其应用模拟研究 |
王振占1,2( ),孙艺玲1,2( ),王文煜1,2,张兰杰1,2,张子瑾1,2,李彬1,2,董晓龙1,2,张升伟1,2 |
1.中国科学院国家空间科学中心微波遥感技术重点实验室,北京 100190 2.中国科学院国家空间科学中心,北京 3.中国科学院大学,北京 100049 4.北京信息科技大学信息与通信工程学院,北京 100101 |
|
Simulation Studies on the Applications of Small-satellite-based Atmospheric Microwave Sounder (SAMS) |
Zhenzhan Wang1,2( ),Yiling Sun1,2( ),Wenyu Wang1,2,Lanjie Zhang1,2,Zijin Zhang1,2,Bin Li1,2,Xiaolong Dong1,2,Shengwei Zhang1,2 |
1.Key Laboratory of Microwave Remote Sensing Technology,Chinese Academy of Sciences,Beijing 100190,China 2.National Space Science Center,Chinese Academy of Sciences,Beijing 100190,China 3.University of Chinese Academy of Sciences,Beijing 100049,China 4.School of Information& Communication Engineering Beijing Information Science And Technology University,Beijing 100101,China |
引用本文:
王振占,孙艺玲,王文煜,张兰杰,张子瑾,李彬,董晓龙,张升伟. 小卫星大气微波探测仪及其应用模拟研究[J]. 遥感技术与应用, 2022, 37(1): 8-16.
Zhenzhan Wang,Yiling Sun,Wenyu Wang,Lanjie Zhang,Zijin Zhang,Bin Li,Xiaolong Dong,Shengwei Zhang. Simulation Studies on the Applications of Small-satellite-based Atmospheric Microwave Sounder (SAMS). Remote Sensing Technology and Application, 2022, 37(1): 8-16.
链接本文:
http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.1.0008
或
http://www.rsta.ac.cn/CN/Y2022/V37/I1/8
|
1 |
Wang Jing. Research on the key technology of miniaturized microwave radiometers for microsatellites[D]. Beijing:University of Chinese Academy of Sciences(National Space Science Center, Chinese Academy of Sciences),2019 [王婧. 基于微小卫星的小型化微波辐射计关键技术研究[D].北京:中国科学院大学(中国科学院国家空间科学中心),2019.]
|
2 |
Blackwell W J. New CubeSat observing capabilities for microwave atmospheric sensing[C]∥ Sensors, Systems, and Next-Generation Satellites XXII,Berlin,2018,10785:1078504.DOI: 10.1117/12.2324319 .
doi: 10.1117/12.2324319
|
3 |
Zhou Y, Shahroudi N, Zhu T, et al. A preliminary assessment of the value and impact of multiple configurations of constellations of EON-MW, a proposed 12U microwave sounder CubeSat for global NWP[J].Tellus A: Dynamic Meteorology and Oceanography,2021, 73(1):1-26.DOI: 10.1080/16000870.2020.1857143 .
doi: 10.1080/16000870.2020.1857143
|
4 |
Reising S C, Berg W, Chandrasekar V, et al. Enabling CubeSat constellations to improve revisit times of microwave sounder/imagers: the TEMPEST-D mission providing global atmospheric science observations for nearly three years[C]∥Sensors,Systems,and Next-Generation Satellites XXV. SPIE Online,2021,11858:1185816. DOI:10.1117/12.2599571 .
doi: 10.1117/12.2599571
|
5 |
Goncharenko Y V, Berg W, Reising S C, et al. Design and analysis of CubeSat microwave radiometer constellations to observe temporal variability of the atmosphere[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14:11728-11736. DOI:10.1109/JSTARS. 2021.3128069 .
doi: 10.1109/JSTARS. 2021.3128069
|
6 |
Blackwell B, Clark K, Cousins D, et al. New capabilities for all-weather microwave atmospheric sensing using CubeSats and constellations[C]∥ AIAA/USU Conference on Small Satellites, Logan,2018:262.
|
7 |
Blackwell W, Allen G, Galbraith C, et al. MicroMAS: A first step towards a nanosatellite constellation for global storm observation[C]∥AIAA/USU Conference on Small Satellites, Logan,2013:120.
|
8 |
Reising S, Gaier T C, Kummerow C, et al. Temporal experiment for storms and tropical systems technology demonstration (TEMPEST-D) mission: enabling time-resolved cloud and precipitation observations from 6U-class satellite constellations [C]∥AIAA/USU Conference on Small Satellites, Logan,2017:78.
|
9 |
Blackwell W J. Radiometer development for small satellite microwave atmospheric remote sensing[C]∥IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth,2017:267-270.DOI: 10.1109/IGARSS.2017. 8126946 .
doi: 10.1109/IGARSS.2017. 8126946
|
10 |
Lim B. Small satellite developments[C]∥2016 IEEE International Geoscience and Remote Sensing Symposium(IGARSS),Beijing,2016:5543-5545.DOI: 10.1109/IGARSS.2016. 7730446 .
doi: 10.1109/IGARSS.2016. 7730446
|
11 |
Blackwell W J. Technology development for small satellite microwave atmospheric remote sensing[C]∥IEEEMTT-S International Microwave Symposium(IMS),Honolulu,2017:222-225.DOI:10.1109/MWSYM.2017.8059079 .
doi: 10.1109/MWSYM.2017.8059079
|
12 |
Zhang Z, Dong X, Liu L, et al. Retrieval of barometric pressure from satellite passive microwave observations over the Oceans[J]. Journal of Geophysical Research: Oceans,2018,123(6):4360-4372.DOI: 10.1029/2018JC013847 .
doi: 10.1029/2018JC013847
|
13 |
Wang Z Z, Zhang D H. Simulation on retrieving of atmospheric wet path delay by microwave radiometer on HY-2 satellite[C]∥China-Japan Joint Microwave Conference (CJMW),Shanghai,2008:2165-4727.
|
14 |
Zhang Yunhua, Xu Ke, Li Maotang, et al. Study on spaceborne topography mapping altimeter[J]. Remote Sensing Te-chnology and Application,1999,14(1):11-14.
|
14 |
张云华, 许可, 李茂堂,等. 星载三维成像雷达高度计研究[J]. 遥感技术与应用,1999,14(1):11-14.
|
15 |
Zhang Shengwei, Wang Zhenzhan, Sun Maohua, et al. The design and development of advanced microwave atmospheric sounder onboard FY-3 satellite[J]. Engineering Sciences,2013,15(7):81-87.
|
15 |
张升伟, 王振占, 孙茂华, 等. 风云三号卫星先进微波大气探测仪系统设计与研制[J].中国工程科学,2013,15(7):81-87.
|
16 |
Hu H, Weng F Z, Han Y, et al. Remote sensing of tropical cyclone thermal structure from satellite microwave sounding instruments: Impacts of background profiles on retrievals[J].Journal of Meteorological Research, 2019, 33(1): 89–103. DOI: 10.1007/s13351-019-8094-1 .
doi: 10.1007/s13351-019-8094-1
|
17 |
Weng F, Hu H, Han Y. Comparing the thermal structures of tropical cyclones derived from ATMS and MWHS[C]∥IEEE International Geoscience and Remote Sensing Symposium(IGARSS),Yokohama,2019:7680-7682.DOI:10.1109/ IGARSS.2019.8899844 .
doi: 10.1109/ IGARSS.2019.8899844
|
18 |
Blackwell W, Allan G, Allen G, et al. Microwave radiometer technology acceleration mission (MiRaTA): Advancing weather remote sensing with nanosatellites[C]∥AIAA/USU Conference on Small Satellites,Logan,2014:7.
|
19 |
Chevallier F. Sampled databases of 60-level atmospheric profiles from the ECMWF analyses[R]. NWP SAF Report No . NWPSAF-EC-TR-004, 2002:27.
|
20 |
Liebe H J, Hufford G A, Cotton M G. Propagation modeling of moist air and suspended water/ice particles at frequencies below 1 000 GHz[C]∥ Atmospheric Propagation Effects Th-rough Natural and Man-Made Obscurants for Visible to MM-Wave Radiation,Palma de Mallorca, 1993:3.1–3.10.
|
21 |
Liu Q, Weng F, English S j. An improved fast microwave water emissivity model[J]. IEEE Transactions on Geoscience and Remote Sensing,2012,49(4):1238-1250. DOI: 10.1109/TGRS.2010.2064779 .
doi: 10.1109/TGRS.2010.2064779
|
22 |
Wang Zhenzhan, Bao Jinghua, Li Yun,et al. Study on retrieval algorithm of ocean parameters for the HY-2 scanning microwave radiometer[J].Engineering Sciences,2014,16(6):70-82.
|
22 |
王振占,鲍靖华,李芸,等.海洋二号卫星扫描辐射计海洋参数反演算法研究[J].中国工程科学,2014,16(6):70-82.
|
23 |
Borbas E, Seemann S W, Huang H L, et al. Global profile training database for satellite regression retrievals with estimates of skin temperature and emissivity[C]∥International ATOVS Study Conference, Beijing,2005:763-770.
|
24 |
Nash J, Oakley T, Vömel H, et al. WMO intercomparison of high quality radiosonde systems[C]∥World Meteorological Organization, Instruments and Observing methods,Yangjiang,2010:107: 485.
|
25 |
Boukabara S A, Clough S A, Hoffman R N. MonoRTM: A monochromatic radiative transfer model for microwave and laser calculation[C]∥ Programs and Abstracts:Specialist Meeting Microwave Remote Sensing, 2001:158.
|
26 |
Mathur A K, Gangwar R K, Gohil B S, et al. Humidity profile retrieval from SAPHIR on-board the Megha-Tropiques[J].Current Science,2013,104(12): 1650-1655.
|
27 |
Zhang Z, Dong X, Liu L, et al. Retrieval of barometric pressure from satellite passive microwave observations over the oceans[J]. Journal of Geophysical Research: Oceans,2018,123(6):4360-72.DOI: 10.1029/2018JC013847 .
doi: 10.1029/2018JC013847
|
28 |
Millán L, Lebsock M, Livesey N, et al. Differential absorption radar techniques: surface pressure[J]. Atmospheric Measurement Techniques,2014,7(11):3959-3970.DOI:10.5194/ amt-7-3959-2014 .
doi: 10.5194/ amt-7-3959-2014
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|