1 | Jung M锛� Reichstein M锛� Ciais P锛� et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply锛籎锛�.Nature锛�2010锛�467锛�7318锛夛細951-954. DOI锛� 10.1038/nature09396 . |
2 | Seneviratne S I锛� Corti T锛� Davin E L锛� et al. Investigating soil moisture-climate interactions in a changing climate锛� A review 锛籎锛�. Earth-Science Reviews锛� 2010锛�99锛�3-4锛夛細125-161. DOI锛� 10.1016/j.earscirev.2010.02.004 . |
3 | Wang K锛� Dickinson R E. A review of global terrestrial evapotranspiration锛� observation锛� modeling锛� climatology锛� and climatic variability 锛籎锛�. Reviews of Geophysics锛� 2012锛� 50锛�2锛夛細 DOI锛� 10.1029/2011RG000373. |
4 | Li Y锛� Kustas W P锛� Huang C锛� et al. Evaluating soil resistance formulations in thermal-based Two-Source Energy Balance 锛圱SEB锛� model锛� Implications for heterogeneous semiarid and arid regions锛籎锛�. Water Resources Research锛� 2019锛� 55锛�2锛夛細 1059-1078. DOI锛� 10.1029/2018WR022981 . |
5 | Song L锛� Liu S锛� Kustas W P锛� et al. Monitoring and validating spatially and temporally continuous daily evaporation and transpiration at river basin scale 锛籎锛�. Remote Sensing of Environment锛�2018锛�219锛�72-88. DOI锛� 10.1016/j.rse.2018.10.002 . |
6 | Bastiaanssen W G M锛� Allen R G锛� Droogers P锛� et al. Twenty-five years modeling irrigated and drained soils锛� State of the art 锛籎锛�. Agricultural Water Management锛� 2007锛� 92锛�3锛夛細 111-125. DOI锛� 10.1016/j.agwat.2007.05.013 . |
7 | Chen Y锛� Xia J锛� Liang S锛� et al. Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China 锛籎锛�.Remote Sensing of Environment锛�2014锛�140锛�279-293. DOI锛� 10.1016/j.rse.2013.08.045 . |
8 | Pan Jinghu锛� Liu Chunyu. Retrieving evapotranspiation of loess hilly-gully region using TSEB parallel model based on remote sensing image锛籎锛�. Remote Sensing Technology and Application锛�2010锛�25锛�2锛夛細183-188. |
8 | 娼樼珶铏庯紝 鍒樻槬闆�. 鍩轰簬TSEB骞宠妯″瀷鐨勯粍鍦熶笜闄垫矡澹戝尯钂告暎鍙戦仴鎰熶及绠� 锛籎锛�. 閬ユ劅鎶�鏈笌搴旂敤锛�2010锛�25锛�2锛夛細183-188. |
9 | Elfarkh J锛� Ezzahar J锛� Er-Raki S锛� et al. Multi-scale evaluation of the TSEB model over a complex agricultural landscape in morocco锛籎锛�. Remote Sensing锛� 2020锛� 12锛�7锛�. DOI锛� 10.3390/rs12071181 . |
10 | Duchemin B锛� Hagolle O锛� Mougenot B锛� et al. Agrometerological study of semi鈥恆rid areas锛� an experiment for analysing the potential of time series of FORMOSAT鈥�2 images 锛圱ensift鈥怣arrakech plain锛夛蓟J锛�. International Journal of Remote Sensing锛�2010锛�29锛�17-18锛夛細5291-5299. DOI锛�10.1080/014311608 02036482 . |
11 | Hssaine B锛� Ezzahar J锛� Jarlan L锛� et al. Combining a two source energy balance model driven by MODIS and MSG-SEVIRI products with an aggregation approach to estimate turbulent fluxes over sparse and heterogeneous vegetation in Sahel Region锛圢iger锛夛蓟J锛�.Remote Sensing锛�2018锛�10锛�6锛�. DOI锛�10.3390/rs10060974 . |
12 | Chehbouni A锛� Hoedjes J C B锛� Ezzahar J锛� et al. Comparison of large aperture scintillometer and eddy covariance measurements锛� can thermal infrared data be used to capture footprint-induced differences锛燂蓟J锛�. Journal of Hydrometeorology锛�2007锛�8锛�2锛夛細144-159. DOI锛� 10.1175/JHM561.1 . |
13 | Ezzahar J锛� Chehbouni A. The use of scintillometry for validating aggregation schemes over heterogeneous grids 锛籎锛�. Agricultural and Forest Meteorology锛�2009锛�149锛�12锛夛細2098-2109. DOI锛� 10.1016/j.agrformet.2009.09.004 . |
14 | Saadi S锛� Boulet G锛� Bahir M锛� et al. Assessment of actual evapotranspiration over a semiarid heterogeneous land surface by means of coupled low-resolution remote sensing data with an energy balance model锛� Comparison to extra-large aperture scintillometer measurements锛籎锛�. Hydrology and Earth System Sciences锛� 2018锛� 22锛�4锛夛細 2187-2209. DOI锛� 10.5194/hess-22-2187-2018 . |
15 | Kustas W锛� Anderson M. Advances in thermal infrared remote sensing for land surface modeling锛籎锛�. Agricultural and Forest Meteorology锛�2009锛�149锛�12锛夛細2071-2081. DOI锛�10.1016/j.agr-formet.2009.05.016 . |
16 | Norman J M锛� Kustas W P锛� Humes K S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature 锛籎锛�. Agricultural and Forest Meteorology锛�1995锛�77锛�3-4锛夛細263-293. DOI锛� 10.1016/0168-1923锛�95锛�02265-Y . |
17 | Norman J M锛� Anderson M C锛� Kustas W P锛� et al. Remote sensing of surface energy fluxes at 101 m pixel resolutions 锛籎锛�. Water Resources Research锛�2003锛�39锛�8锛�. DOI锛� 10.1029/2002wr001775 . |
18 | Anderson M C锛� Norman J M锛� Diak G R锛� et al. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing 锛籎锛�. Remote Sensing of Environment锛�1997锛�60锛�2锛夛細195-216. DOI锛� 10.1016/S0034-4257锛�96锛�00215-5 . |
19 | Cammalleri C锛� Anderson M C锛� Ciraolo G锛� et al. Applications of a remote sensing-based two-source energy balance algorithm for mapping surface fluxes without in situ air temperature observations 锛籎锛�. Remote Sensing of Environment锛� 2012锛� 124锛�502-515. DOI锛� 10.1016/j.rse.2012.06.009 . |
20 | Guzinski R锛� Nieto H锛� Sandholt I锛� et al. Modelling high-resolution actual evapotranspiration through Sentinel-2 and Sentinel-3 data fusion锛籎锛�. Remote Sensing锛� 2020锛� 12锛�9锛夛細1433. DOI锛� 10.3390/rs12091433 . |
21 | Du Qiaoling锛� Xu Xuegong锛� Liu Wenzheng.Ecological security assessment for the oases in the middle and lower Heihe River锛籎锛�. Acta Ecologica Sinica锛� 2004锛�9锛夛細1916-23. |
21 | 鏉滃阀鐜诧紝 璁稿宸ワ紝 鍒樻枃鏀�. 榛戞渤涓笅娓哥豢娲茬敓鎬佸畨鍏ㄨ瘎浠凤蓟J锛�. 鐢熸�佸鎶ワ紝 2004锛�9锛夛細1916-23. |
22 | Cheng G锛� Li X锛� Liu S锛� et al. Heihe Watershed Allied Telemetry Experimental Research 锛圚iWATER锛夛細 Scientific objectives and experimental design 锛籎锛�. Bulletin of the American Meteorological Society锛�2013锛�94锛�8锛夛細1145-1160. DOI锛� 10.1175/BAMS-D-12-00154.1 . |
23 | Li X锛� Liu S锛� Li H锛� et al. Intercomparison of six upscaling evapotranspiration methods锛歠rom site to the satellite pixel 锛籎锛�. Journal of Geophysical Research锛� Atmospheres锛� 2018锛� 123锛�13锛夛細 6777-6803. DOI锛� 10.1029/2018JD028422 . |
24 | Sun L锛� Chen Z锛� Gao F锛� et al. Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data 锛籎锛�. Computers & Geosciences锛�2017锛�105锛�10-20. DOI锛� 10.1016/j.cageo.2017.04.007 . |
25 | J?nsson P锛� Eklundh L. TIMESAT鈥攁 program for analyzing time-series of satellite sensor data 锛籎锛�. Computers & Geosciences锛�2004锛�30锛�8锛夛細833-845. DOI锛�10.1016/j.cageo.2004. 05.006 . |
26 | Yang Xuesen.Research on the single-channel algorithm for land surface temperature retrieval from Landsat 8 data锛籇锛�.Beijing锛� China University of Geosciences锛圔eijing锛夛紝2015. |
26 | 鏉ㄥ妫�. 鍩轰簬鍗曢�氶亾绠楁硶鐨凩andsat 8鍗槦鏁版嵁鍦拌〃娓╁害鍙嶆紨鐮旂┒ 锛籇锛� . 鍖椾含锛氫腑鍥藉湴璐ㄥぇ瀛︼紙鍖椾含锛夛紝 2015. |
27 | Gao F锛� Anderson M C锛� Kustas W P锛� et al. Simple method for retrieving leaf area index from Landsat using MODIS leaf area index products as reference锛籎锛�. Journal of Applied Remote Sensing锛� 2012锛� 6锛�1锛�. DOI锛� 10.1117/1.JRS.6.063554 . |
28 | Liu S锛� Li X锛� Xu Z锛� et al. The Heihe integrated observatory network锛� a basin-scale land surface processes observatory in China锛籎锛�. Vadose Zone Journal锛�2018锛�17锛�1锛�. DOI锛�10.2136/vzj2018.04.0072 . |
29 | Liu S M锛� Xu Z W锛� Wang W Z锛� et al. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem锛籎锛�. Hydrology and Earth System Sciences锛�2011锛�15锛�4锛夛細1291-1306. DOI锛� 10.5194/hess-15-1291-2011 . |
30 | Wohlfahrt G锛� Haslwanter A锛� Hortnagl L锛� et al. On the consequences of the energy imbalance for calculating surface conductance to water vapour锛籎锛�. Agricultural for Meteorol锛� 2009锛� 149锛�9锛夛細 1556-1559. DOI锛� 10.1016/j.agrformet.2009.03.015 . |
31 | Li Xiaoyuan锛� Yu Deyong. Progress on evapotranspiration estimation methods and driving forces in arid and semiarid regions锛籎锛�.Arid Zone Research锛�2020锛�37锛�1锛夛細26-36. |
31 | 鏉庢檽濯涳紝 浜庡痉姘�. 钂告暎鍙戜及绠楁柟娉曞強鍏堕┍鍔ㄥ姏鐮旂┒杩涘睍锛籎锛�. 骞叉棻鍖虹爺绌讹紝2020锛�37锛�1锛夛細26-36. |
32 | Song Lisheng锛� Liu Shaomin锛� Xu Tongren锛宔t al. Soil evaporation and vegetation transpiration锛� remotely sensed dstimation and validation锛籎锛�. Journal of Remote Sensing锛�2017锛�21锛�6锛夛細966-981. |
32 | 瀹嬬珛鐢燂紝 鍒樼粛姘戯紝 寰愬悓浠侊紝绛�. 鍦熷¥钂稿彂鍜屾琚捀鑵鹃仴鎰熶及绠椾笌楠岃瘉锛籎锛�. 閬ユ劅瀛︽姤锛�2017锛�21锛�6锛夛細966-981. |
33 | Shuttleworth W J锛� Wallace J S. Evaporation from sparse crops鈥恆n energy combination theory 锛籎锛�. Quarterly Journal of the Royal Meteorological Society锛� 1985锛� 111锛�469锛夛細 839-855. DOI锛� 10.1002/qj.49711146910 . |
34 | Kustas W P锛� Zhan X锛� Schmugge T J. Combining optical and microwave remote sensing for mapping energy fluxes in a semiarid watershed 锛籎锛�. Remote Sensing of Environment锛� 1998锛� 64锛�2锛夛細 116-131. DOI锛� 10.1016/S0034-4257锛�97锛�00176-4 . |
35 | Wang Lijuan锛� Zuo Hongchao锛� Chen Jiwei锛� et al.Land Surface Temperature and sensible heat flux estimated from remote sensing over oasis and desert锛籎锛�.Meteorology Plateau锛�2012锛�31锛�3锛夛細646-656. |
35 | 鐜嬩附濞燂紝 宸︽椽瓒咃紝 闄堢户浼燂紝绛�. 閬ユ劅浼扮畻缁挎床-娌欐紶涓嬪灚闈㈠湴琛ㄦ俯搴﹀強鎰熺儹閫氶噺锛籎锛�.楂樺師姘旇薄锛�2012锛�31锛�3锛夛細 646-656.锛� |
36 | Cb A锛� Jsk A锛� Mpm B锛� et al. Using SMAP Level-4 soil moisture to constrain MOD16 evapotranspiration over the contiguous USA锛籎锛�. Remote Sensing of Environment锛�2020锛�255. DOI锛� 10.1016/j.rse.2020.112277 . |
37 | Bouchra锛� Ait锛� Hssaine锛� et al. Calibrating an evapotranspiration model using radiometric surface temperature锛� vegetation cover fraction and near-surface soil moisture data锛籎锛�. Agricultural & Forest Meteorology锛�2018. DOI锛�10.1016/j.agr-formet.2018.02.033 . |