Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (2): 436-450    DOI: 10.11873/j.issn.1004-0323.2022.2.0436
大气遥感专栏     
大气甲烷探测进展与全球甲烷分布分析
刘双慧1,2,3(),李小英1(),曹西凤1,2,张新苑1,2
1.中国科学院空天信息创新研究院,北京 100094
2.中国科学院大学,北京 100049
3.中国科学院大学电子电气与通信工程学院,北京 100049
Development of Atmospheric Methane Observation and Distribution of Global Methane
Shuanghui Liu1,2,3(),Xiaoying Li1(),Xifeng Cao1,2,Xinyuan Zhang1,2
1.Aerospace Information Research Institute,Chinese Academy of Science,Beijing 100094,China
2.University of Chinese Academy of Sciences,Beijing 100049,China
3.University of Chinese Academy of Sciences School of Electronic,Electrical and Communication Engineering,Beijing 100049,China
 全文: PDF(1335 KB)   HTML
摘要:

甲烷(CH4)是大气中具有化学活性和辐射活性的气体。随着人类文明的发展,CH4的总量一直在增加。工业革命前全球CH4浓度为700 ppbv,到20世纪90年代它的浓度达到1714 ppbv。研究阐述了CH4地基探测、空基探测、星基探测及反演算法的发展现状。自1979~1983年Nimbus-7卫星上的SAMS探测仪首次实现对平流层CH4浓度探测以来,国际上已有许多可探测CH4的卫星探测仪。随着卫星探测技术的发展及反演算法的改进,卫星传感器反演的CH4精度逐渐提高。其中天底模式下TROPOMI传感器反演的CH4浓度与地面站点数据的偏差为14 ppbv(0.8%);临边/掩星模式下ACE-FTS反演的对流层至平流层下部CH4廓线精度在10%以内。而后,基于AIRS L3产品分析了300 hPa、150 hPa全球CH4浓度变化趋势和分布特征, 2010~2020年全球CH4浓度增长了约50 ppbv,年均增长率约为0.29%;全球CH4浓度北高南低,高值区分布在大西洋中部、非洲北部、中东地区和中国西部。

关键词: 地基探测空基探测星基探测反演算法全球甲烷    
Abstract:

Methane (CH4) is a chemically and radiologically active gas in the atmosphere. With the development of human civilization, the total amount of CH4 has been increasing. Before the industrial revolution, the global CH4 concentration was 700 ppbv, and it reached 1714 ppbv by the 1990s. This paper describes the development of CH4 ground-based detection, space-based detection, satellite-based detection and inversion algorithms. During 1979~1983, the SAMS on Nimbus-7 satellite observated CH4 concentration in the stratosphere for the first time. After that, many sensors have been launched to observe CH4. The satellite-based instruments mainly observe CH4 in the infrared band by nadir viewing, limb sounding or occulation observating. In recent years, the spatial resolution and spectral resolution of the sensors are greatly improved. The TROPOMI has a spatial resolution of 7 km×7 km; the spectral resolution of ACE-FTS、AIUS reach 0.02 cm-1. In the near infrared band, WFM-DOAS is the main algorithm for inversion of CH4 concentration, and OEM is mainly used in the mid and far-infrared band. With the development of satellite observation technology and the improvement of retrieval algorithms, the accuracy of CH4 retrieved has gradually improved. The deviation between CH4 concentration retrieved by TROPOMI in the nadir viewing and the CH4 concentration provided by ground-based stations is 14 ppbv (0.8%); The accuracy of CH4 profile retrieved by ACE-FTS in the limb sounding/occultation observing is within 10% from troposphere to lower stratosphere.Then, the trends and distribution characteristics of global CH4 concentration at 300 hPa and 150 hPa are described in this paper. The global CH4 concentration increased by ~50 ppbv from 2010 to 2020, with an average annual growth rate of ~0.29%; At 300 hPa, the global CH4 concentration was 1 767 ppbv in 2010 and increased by 55 ppbv in 2020; At 150 hPa, the global CH4 concentration was less than 1 700 ppbv in 2010 and reached 1 745.6 ppbv in 2020; The global CH4 concentration is higher in the north and lower in the south, the reason lies in that there are numerous methane emission sources (freshwater wetlands, rice cultivation, fossil fuel combustion and biomass combustion, etc) in the northern hemisphere; The high concentrations of CH4 are distributed in the mid-Atlantic, northern Africa, the Middle East and western China.

Key words: Ground detection    Space-based detection    Satellite-based detection    Inversion algorithm    Global methane
收稿日期: 2021-05-17 出版日期: 2022-06-17
ZTFLH:  P407  
基金资助: 国家重点研发项目(2018YFB050490303);国家自然科学基金项目(41571345)
通讯作者: 李小英     E-mail: liushuanghui19@mails.ucas.ac.cn;Lixy01@radi.ac.cn
作者简介: 刘双慧(1996-),女,山东德州人,硕士研究生,主要从事定量遥感应用研究。E?mail:liushuanghui19@mails.ucas.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘双慧
李小英
曹西凤
张新苑

引用本文:

刘双慧,李小英,曹西凤,张新苑. 大气甲烷探测进展与全球甲烷分布分析[J]. 遥感技术与应用, 2022, 37(2): 436-450.

Shuanghui Liu,Xiaoying Li,Xifeng Cao,Xinyuan Zhang. Development of Atmospheric Methane Observation and Distribution of Global Methane. Remote Sensing Technology and Application, 2022, 37(2): 436-450.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.2.0436        http://www.rsta.ac.cn/CN/Y2022/V37/I2/436

站点名称纬度/°N经度/°E高度/m站点名称纬度/°N经度/°E高度/m
1Eureka80.05-86.4261019Anmyeondo36.54126.3330
2Ny-Alesund78.911.92020Tsukuba36.05140.1230
3Sodankyla67.3726.6318821Hefei31.90118.6729
4Los Alamos35.87-106.322 13022Nicosia35.1433.38185
5East Trout Lake54.35-104.99501.823Dryden34.96-117.88699
6Sites/Bialystok53.2323.0318024JPL, Pasadena34.2-118.18390
7Bremen53.18.852725Caltech34.14-118.13230
8Harwell,Oxfordshire51.57-1.3112326Saga33.24130.297
9Karlsruhe49.18.4411627Izana28.3-16.52 370
10Paris48.852.366028Burgos18.53120.6535
11Orleans47.972.1113029Manaus-3.21-60.650
12Garmisch47.4811.0674030Ascension Island-7.92-14.3310
13Zugspitze47.4210.982 96031Darwin-12.42130.8930
14Park Falls45.95-90.2744032Reunion Island-20.955.4987
15Rikubetsu43.46143.7738033Wollongong-34.41150.8830
16Indianapolis39.86-8627034Lauder-45.04169.68370
17Four Corners36.8-108.481 64335Arrival Heights-77.83166.66250
18Lamont36.6-97.49320
表1  TCCON 地基站点信息表[11-12]
站点名称纬度/°N经度/°E高度/m仪器名称分辨率/cm-1柱(C)/廓线(P)
1Eureka80.05-86.42610Bruker 125HR0.002 7P
2Ny Alesund78.9211.9315

Bruker 120M

Bruker 120HR

0.004

0.002 8

C / P
3Thule76.53-68.7430~220

Bruker 120M

Bruker 125HR

0.004C
4Esrange67.921.1341JPL MkIV0.006C
5Kiruna67.8420.41419

Bruker 120HR

Bruker 125

0.002
6Fairbanks64.82-147.87135JPL MkIV0.006C
7Harestua60.210.8596

Bruker 120M

Bruker 125M

0.003 5C
8St. Petersburg59.929.820Bruker 125HR0.002P
9Bremen53.18.827

Bruker 120HR

Bruker 125HR

0.002 8

C
10Zugspitze47.4210.982 964

Bruker 120HR

Bruker 125HR

0.002 8C
11Jungfraujoch46.557.983 580

home-built FTS

Bruker 120HR

P
12Toronto43.66-79.4174Bomem DA80.004C
13Rikubetsu43.46143.77380

Bruker 120M

Bruker 120/5HR

0.004

0.003 5

C
14Mt. Barcroft37.58-118.243 800JPL MkIV0.006C
15Table Mountain Facility34.4-117.72 300JPL MkIV0.006C
16Izana28.3-16.482 367

Bruker 120M

Bruker 125HR

0.003 5

0.003 5

C
17Mauna Loa19.54-155.583 397

Bruker 120HR

Bruker 125HR

Bomem DA3

0.003 5

0.002

C
18Altzomoni19.1298.663 985Bruker 120/5HR0.003 5P
19Paramaribo5.75-55.223

Bruker 120M

Bruker 125M

P
20Reunion Island-20.955.585

Bruker 120M

Bruker 125HR

P
21Wollongong-34.41150.8830

Bomem DA3

Bomem DA8

Bruker HR 125

0.02

0.004

0.004

C
22Lauder-45.04-169.68370

Bruker 120M

Bruker 120HR

Bruker 125HR

Bruker 120M

Bomem DA2

0.003 5

0.003 5

0.003 5

0.004

0.02

C
23Arrival Heights-77.83166.67184

Bruker 120M

Bruker 125HR

Bruker 120M

Bomem DA2

Eocom

0.003 5

0.003 5

0.02

0.06

C
表2  NDACC可探测CH4浓度的地基站点信息表[15]
卫星/传感器发射时间光谱范围/μmCH4探测窗口/μm光谱分辨率
Terra/MOPITT1999.122.2、2.3、4.72.17~2.34
Envisat/SCIAMACHY2002.30.24~2.381.63~1.670.2~1.5 nm
Sentinel-5P/TROPOMI2017.10

0.27~0.775

2.305~2.385

2.305~2.3850.25~1 nm
GF-5/ GMI2018.5

0.759~0.769

1.568~2.058

1.642~1.6580.27~0.6 cm-1
表3  短波红外天底探测器主要参数
卫星/传感器发射时间光谱范围/μmCH4探测窗口/μm光谱分辨率/cm-1
ADEOS/IMG1996.83.3~153.3~4.310.1~0.4
Aqua/AIRS2002.53.8~15.47.6及附近波长0.5~2
Aura/TES2004.73.3~15.47.52~9.090.06
MetOp/IASI2006.103.62~15.57.75~8.060.3~0.5
GOSAT/TANSO-FTS2009.10.757~14.33

1.64~1.68

7.63~8.2

0.27~0.6
Suomi-NPP/CrIS2011.103.9~15.47.37~8.20.625~2.5
表4  中红外与热红外天底探测器主要参数
卫星/传感器发射时间探测模式光谱范围/μmCH4探测窗口/μm光谱分辨率
Nimbus-7/SAMS1978.10临边2.7~1007.7及附近波长
UARS/HALOE1991.9掩星2.45~10.043.3及附近波长2~4 cm-1
ADEOS-I/ILAS-I1996.8掩星

0.753~0.784

6.21~11.76

7.4/7.8及附近波长

0.15 nm

0.129 μm

Envisat/SIAMACHY2002.3掩星/临边0.24~2.381.559~1.6710.2~1.5 nm
Envisat/MIPAS2002.3临边4.1~14.66.67~8.230.035 cm-1
ADEOS-II/ILAS-II2002.12掩星

0.753~0.784

3~12.85

7.4 / 7.8

0.15 nm

0.003 2~0.129 μm

SCISAT-1/ACE-FTS2003.8掩星2.2~13.3

3.46~3.83

6.84~8.03

0.02 cm-1
Aura/TES2004.7临边3.3~15.4

3.28~3.57

6.45~9.1

0.06 cm-1
Aura/HIRDLS2004.7临边6~187.44及附近波长
GF-5/AIUS2018.5掩星2.4~13.30.02 cm-1
表5  临边/掩星探测器主要参数
图1  2010~2020年全球甲烷浓度变化趋势图
图2  2020年全球大气CH4浓度分布图
1 Winterstein F, Tanalski F, Jockel P, et al. Implication of strongly increased atmospheric methane concentrations for chemistry-climate connections[J]. Atmospheric Chemistry and Physics, 2019, 19(10): 7151-7163. DOI: 10.5194/acp-19-7151-2019 .
doi: 10.5194/acp-19-7151-2019
2 Zhou M Q, Langerock B, Vigouroux C, et al. Atmospheric CO and CH4 time series and seasonal variations on Reunion Island from ground-based in situ and FTIR (NDACC and TCCON) measurements[J]. Atmospheric Chemistry and Physics, 2018, 18(19): 13881-13901. DOI: 10.5194/acp-18-13881-2018 .
doi: 10.5194/acp-18-13881-2018
3 Hopcroft P. ATMOSPHERIC SCIENCE Ancient ice and the global methane cycle[J]. Nature, 2017, 548(7668): 403-404. DOI: 10.1038/548403a .
doi: 10.1038/548403a
4 Etheridge D M, Steele L P, Francey R J, et al. Atmospheric methane between 1000 AD and present: Evidence of anthropogenic emissions and climatic variability[J]. Journal of Geophysical Research-Atmospheres, 1998, 103(D13): 15979-15993. DOI: 10.1029/98JD00923 .
doi: 10.1029/98JD00923
5 Wang Xiaofeng. The “source” and “collection” of Greenhouse Gases and its control measure[J], Heilongjiang Environmental Journal,2012,36(2):13-15.
5 王晓峰, 温室气体的“源”与“汇”及其防治对策[J].黑龙江环境通报,2012,36(2):13-15.
6 Bai Wenguang. Preliminary study of satellite remote sensing of Greenhouse Gases methane[D]. Beijing: Chinese Academy of Meteorological Sciences, 2010.白文广. 温室气体CH4卫星遥感监测初步研究[D]. 北京: 中国气象科学研究院, 2010.
7 Kamieniak J, Randviir E P, Banks C E. The latest developments in the analytical sensing of methane[J]. Trac Trends in Analytical Chemistry, 2015, 73: 146-157. DOI: 10.1016/j.trac.2015.04.030 .
doi: 10.1016/j.trac.2015.04.030
8 Jacob D J, Turner A J, Maasakkers J D,et al. Satellite observa-tions of atmospheric methane and their value for quantifying me-thane emissions[J].Atmospheric Chemistry and Physics,2016,16(22):14371-14396. DOI:10.5194/acp-16-14371-2016 .
doi: 10.5194/acp-16-14371-2016
9 Streets D G, Canty T, Carmichael G R, et al. Emissions estimation from satellite retrievals: A review of current capability[J]. Atmospheric Environment, 2013, 77: 1011-1042. DOI: 10.1016/j.atmosenv.2013.05.051 .
doi: 10.1016/j.atmosenv.2013.05.051
10 Wang Z T, Ma P F, Zhang L J, et al. Systematics of atmospheric environment monitoring in China via satellite remote sensing[J]. Air Quality Atmosphere and Health, 2020, 14(2): 157-169. DOI: 10.1007/s11869-020-00922-7 .
doi: 10.1007/s11869-020-00922-7
11 Wunch D, Toon G C, Blavier J F L, et al. The total carbon column observing network[J]. Philosophical Transactions of the Royal Society a-Mathematical, Physical and Engineering Sciences, 2011, 369(1943): 2087-2112. DOI: 10.1098/rsta.2010.0240 .
doi: 10.1098/rsta.2010.0240
12 Messerschmidt J, Geibel M C, Blumenstock T,et al. Calibration of TCCON column-averaged CO2: The first aircraft campaign over European TCCON sites[J]. Atmospheric Chemistry and Physics,2011,11(21):10765-77. DOI:10.5194/acp-11-10765-2011 .
doi: 10.5194/acp-11-10765-2011
13 Nadezhdinsky A I, Ponurovsky Y Y, Shapovalov Y P, et al. Preliminary results of an aircraft system based on near-IR diode lasers for continuous measurements of the concentration of methane, carbon dioxide, water and its isotopes[J]. Applied Physics B: Lasers and Optics, 2012, 109(3): 505-510. DOI: 10.1007/s00340-012-5226-z .
doi: 10.1007/s00340-012-5226-z
14 Batchelor R L, Strong K, Lindenmaier R, et al. A new bruker IFS 125HR FTIR spectrometer for the polar environment atmospheric research laboratory at eureka, nunavut, canada: Measurements and comparison with the existing bomem DA8 spectrometer[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(7): 1328-1340. DOI: 10.1175/2009jtecha1215.1 .
doi: 10.1175/2009jtecha1215.1
15 De Maziere M, Thompson A M, Kurylo M J,et al. The Network for the Detection of Atmospheric Composition Change (NDACC): History, status and perspectives[J]. Atmospheric Chemistry and Physics,2018,18 (7):4935-64. DOI:10.5194/acp-18-4935-2018 .
doi: 10.5194/acp-18-4935-2018
16 Webster C R, May R D, Trimble C A, et al. Aircraft(ER-2) Laser Infrared-Absorption Spectrometer(ALIAS) for In-Situ Stra to Spheric Measurements of HCL,N2O,CH4,NO2,and HNO3 [J]. Applied Optics, 1994, 33(3): 454-472. DOI: 10.1364/ao.33.000454 .
doi: 10.1364/ao.33.000454
17 Elkins J W, Fahey D W, Gilligan J M, et al. Airborne gas chromatograph for in situ measurements of long-lived species in the upper troposphere and lower stratosphere[J]. Geophysical Research Letters, 1996, 23(4): 347-350. DOI: 10.1029/96gl00244 .
doi: 10.1029/96gl00244
18 Scott D C, Herman R L, Webster C R, et al. Airborne Laser Infrared Absorption Spectrometer (ALIAS-II) for in situ atmospheric measurements of N2O,CH4,CO,HCl,and NO2 from balloon or remotely piloted aircraft platforms[J]. Applied Optics,1999,38(21):4609-4622.DOI:10.1364/ao.38. 004609 .
doi: 10.1364/ao.38. 004609
19 Sierk B, Richter A, Rozanov A, et al. Retrieval and monitoring of atmospheric trace gas concentrations in nadir and limb geometry using the space-borne SCIAMACHY instrument[J]. Environmental Monitoring and Assessment,2006,120(1-3): 65-77. DOI: 10.1007/s10661-005-9049-9 .
doi: 10.1007/s10661-005-9049-9
20 Edwards D P, Halvorson C M, Gille J C. Radiative transfer modeling for the EOS Terra satellite Measurement of Pollution in the Troposphere (MOPITT) instrument[J]. Journal of Geophysical Research-Atmospheres,1999,104(D14):16755-16775. DOI: 10.1029/1999jd900167 .
doi: 10.1029/1999jd900167
21 Pfister G, Gille J C, Ziskin D, et al. Effects of a spectral surface reflectance on measurements of backscattered solar radiation: Application to the MOPITT methane retrieval[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(5): 566-574. DOI: 10.1175/jtech1721.1 .
doi: 10.1175/jtech1721.1
22 Frankenberg C, Bergamaschi P, Butz A, et al. Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT[J]. Geophysical Research Letters, 2008, 35(15). DOI: 10.1029/2008gl034300 .
doi: 10.1029/2008gl034300
23 Buchwitz M, Burrows J P. Retrieval of CH4 , CO, and CO 2, total column amounts from SCIAMACHY near-infrared nadir spectra: Retrieval algorithm and first results[C]∥ Schafer K P, Comeron A, Carleer M R et al, eds. Remote Sensing of Clouds and the Atmosphere Vlll,Proceedings of SPIE,2004, 5235:357-388.
24 Buchwitz M, de Beek R, Noel S, et al. Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS: version 0.5 CO and CH4 and impact of calibration improvements on CO2 retrieval[J]. Atmospheric Chemistry and Physics, 2006, 6: 2727-2751. DOI:10.5194/acp-6-2727-2006 .
doi: 10.5194/acp-6-2727-2006
25 Schneising O, Buchwitz M, Reuter M, et al. A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor[J]. Atmospheric Measurement Techniques,2019,12(12):6771-6802. DOI:10.5194/amt-12-6771-2019 .
doi: 10.5194/amt-12-6771-2019
26 Xiong W. Greenhouse gases Monitoring Instrument(GMI) on GF-5 satellite (invited)[J]. Infrared and Laser Engineering, 2019, 48(3):24-30.
27 Shimoda H, OGAWA T. Interferometric Monitor for Greenhouse Gases(IMG)[C]∥ Scholl M S, eds. Infrared Spaceborne Remote Sensing II, 1994, 2268: 92-102.
28 Xiong X Z, Barnet C, Maddy E, et al. Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS)[J]. Journal of Geophysical Research-Biogeosciences, 2008, 113. DOI: 10.1029/2007jg000500 .
doi: 10.1029/2007jg000500
29 Worden J, Kulawik S, Frankenberg C, et al. Profiles of CH4, HDO, H2O, and N2O with improved lower tropospheric vertical resolution from Aura TES radiances[J]. Atmospheric Measurement Techniques, 2012, 5(2): 397-411. DOI:10.5194/amt-5-397-2012 .
doi: 10.5194/amt-5-397-2012
30 Wecht K J, Jacob D J, Wofsy S C, et al. Validation of TES methane with HIPPO aircraft observations: implications for inverse modeling of methane sources[J]. Atmospheric Chemistry and Physics,2012,12(4):1823-1832. DOI:10.5194/acp-12-1823-2012 .
doi: 10.5194/acp-12-1823-2012
31 Razavi A, Clerbaux C, Wespes C, et al. Characterization of methane retrievals from the IASI space-borne sounder[J]. Atmospheric Chemistry and Physics, 2009, 9(20): 7889-7899. DOI: 10.5194/acp-9-7889-2009 .
doi: 10.5194/acp-9-7889-2009
32 Zadvornykh I V, Gribanov K G, Zakharov V I, et al. Methane vertical profiles retrieval from IASI/METOP and TANSO-FTS/GOSAT data[C]∥ Matvienko G G, Romanovskii O A, eds. 24th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 2018.
33 Tanaka T, Shiomi K, Kawakami S, et al. Characterization and validation of CO2 and CH4 products derived from the GOSAT thermal infrared band[C]∥ Shimoda H, Xiong X, eds. Earth Observing Missions and Sensors: Development, Implementation, and Characterization II,. 2012.
34 Chen Y, Han Y, Weng F Z. Reprocessing of Suomi NPP Cris sensor data records and impacts on padiometric and spectral long-term accuracy and stability[C]∥ IEEE eds. 2017 IEEE International Geoscience and Remote Sensing Symposium. 2017, 4178-4181.
35 Drummond J R, Houghton J T, Peskett G D, et al. The stratospheric and mesospheric sounder on Nimbus-7[J]. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 1980, 296(1418): 219-241. DOI: 10.1098/rsta.1980.0166 .
doi: 10.1098/rsta.1980.0166
36 Rodgers C D, Jones R L,Barnett.J J. Retrieval of temperature and composition from Nimbus-7 Sams measurements[J]. Jou-rnal of Geophysical Research-Atmospheres, 1984, 89(ND4): 5280-5286. DOI: 10.1029/JD089iD04p05280 .
doi: 10.1029/JD089iD04p05280
37 Park J H, Russell J M, Gordley L L, et al. Validation of halogen occultation experiment CH4 measurements from the UARS[J]. Journal of Geophysical Research-Atmospheres, 1996, 101(D6): 10183-10203. DOI: 10.1029/95jd02736 .
doi: 10.1029/95jd02736
38 Kanzawa H, Sugita T, Nakajima H, et al. Validation and data characteristics of nitrous oxide and methane profiles observed by the Improved Limb Atmospheric Spectrometer (ILAS) and processed with the Version 5.20 algorithm[J]. Journal of Geophysical Research-Atmospheres, 2003, 108(D16). DOI: 10.1029/2002jd002458 .
doi: 10.1029/2002jd002458
39 Noel S, Bramstedt K, Hilker M, et al. Stratospheric CH4 and CO2 profiles derived from SCIAMACHY solar occultation measurements[J]. Atmospheric Measurement Techniques, 2016, 9(4): 1485-1503. DOI: 10.5194/amt-9-1485-2016 .
doi: 10.5194/amt-9-1485-2016
40 von Clarmann T, Hoepfner M, Kellmann S, et al. Retrieval of temperature, H2O, O3, HNO3, CH4, N2O, ClONO2 and ClO from MIPAS reduced resolution nominal mode limb emission measurements[J]. Atmospheric Measurement Techniques,2009,2(1):159-175. DOI:10.5194/amt-2-159-2009 .
doi: 10.5194/amt-2-159-2009
41 Bracher A, Bramstedt K, Sinnhuber M, et al. Validation of MIPAS O3,NO2,H2O and CH4 Profiles(V4.61) with Colloca-ted Measurements of HALOE and SAGE II[C]∥Danesy,eds. ESA Second Workshop on the Atmospheric Chemistry Validation of ENVISAT(ACVE- 2),Frascati,Italy. 2004,319.
42 Ejiri M K, Terao Y, Sugita T, et al. Validation of the improved limb atmospheric spectrometer-II (ILAS-II) version 1.4 nitrous oxide and methane profiles[J]. Journal of Geophysical Research-Atmospheres, 2006, 111(D22). DOI: 10.1029/2005jd006449 .
doi: 10.1029/2005jd006449
43 Yokota T, Nakajima H, Sugita T, et al. Improved Limb Atmospheric Spectrometer (ILAS) data retrieval algorithm for Version 5.20 gas profile products[J]. Journal of Geophysical Research-Atmospheres, 2002, 107(D24). DOI: 10.1029/2001jd000628 .
doi: 10.1029/2001jd000628
44 De Maziere M, Vigouroux C, Bernath P F, et al. Validation of ACE-FTS v2.2 methane profiles from the upper troposphere to the lower mesosphere[J]. Atmospheric Chemistry and Physics, 2008, 8(9): 2421-2435. DOI: 10.5194/acp-8-2421-2008 .
doi: 10.5194/acp-8-2421-2008
45 Beer R, Glavich T A, Rider D M. Tropospheric emission spectrometer for the Earth Observing System's Aura Satellite[J]. Applied Optics, 2001, 40(15): 2356-2367. DOI: 10.1364/ao.40.002356 .
doi: 10.1364/ao.40.002356
46 Hawkins G J, Hunneman R, Sherwood R, et al. Infrared filters and coatings for the high resolution dynamics limb sounder (6~18 μm)[J]. Applied Optics, 2000, 39(28): 5221-5230. DOI: 10.1364/ao.39.005221 .
doi: 10.1364/ao.39.005221
47 Li X Y, Xu J, Cheng T H, et al. Monitoring trace gases over the antarctic using atmospheric infrared ultraspectral sounder onboard GaoFen-5: algorithm description and first retrieval results of O3, H2O,and HCl[J]. Remote Sensing, 2019, 11(17). DOI: 10.3390/rs11171991 .
doi: 10.3390/rs11171991
48 Wang H M, Li X Y, Xu J, et al. Assessment of retrieved N₂O, NO₂, and HF profiles from the atmospheric infrared ultraspectral sounder based on simulated spectra[J]. Sensors (Basel, Switzerland), 2018, 18(7). DOI:10.3390/s18072209 .
doi: 10.3390/s18072209
49 Wang J N, Zhang L F, Zhao H Q, et al. Analysis of the annual variation trend of atmospheric methane over China[C]∥ Gao W, Jackson T J, Wang J, et al. Remote Sensing and Modeling of Ecosystems for Sustainability IX, 2012.
50 Alekseychik P, Lappalainen H K, Petaja T, et al. Ground-based Station Network in Arctic and Subarctic Eurasia: An overview[J]. Geography,Environment,Sustainability, 2016, 9(2): 75-88. DOI: 10.15356/2071-9388_02v09_2016_06 .
doi: 10.15356/2071-9388_02v09_2016_06
51 Viciani S, D'Amato F, Mazzinghi P, et al. A cryogenically operated laser diode spectrometer for airborne measurement of stratospheric trace gases[J]. Applied Physics B:Lasers and Optics,2008,90(3-4):581-592. DOI: 10.1007/s00340-007-2885-2 .
doi: 10.1007/s00340-007-2885-2
52 Jones R L, PYLE J A. Observations of CH4 and N2O by the NIMBUS-7 SAMS-a Comparison wutg insitu data and TWO-Dunebsuibak Numerical-MODEL cakcykatuibs[J]. Journal of Geophysical Research-Atmospheres, 1984, 89(ND4): 5263-5279. DOI:10.1029/JD089iD04p05263 .
doi: 10.1029/JD089iD04p05263
53 Auvinen H, Oikarinen L, Kyrola E. Inversion algorithms for recovering minor species densities from limb scatter measurements at UV-visible wavelengths[J]. Journal of Geophysical Research-Atmospheres, 2002, 107(D13). DOI: 10.1029/2001jd000407 .
doi: 10.1029/2001jd000407
54 Weinreb M P. Equivalence method for retrieving stratospheric constituent profiles from infrared solar occultation data[J]. Journal of Climate and Applied Meteorology, 1986, 25(3): 364-370. DOI: 10.1175/1520-0450(1986)025<0364:Emfrsc> 2.0.Co;2 .
doi: 10.1175/1520-0450(1986)025<0364:Emfrsc> 2.0.Co;2
55 Shaikh M M, Notarpietro R. Evaluation of the impact of ionospheric asymmetry on GNSS radio occultation inversion products using NeQuick and IRI[C]∥ IEEE eds. 2013 International Conference on Localization and Gnss(ICL-GNSS), 2013.
56 Buchwitz M, Rozanov V V, Burrows J P. A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2O total column amounts from SCIAMACHY Envisat-1 nadir radiances[J]. Journal of Geophysical Research-Atmospheres. 2000, 105(D12): 15231-15245. DOI: 10.1029/2000jd900191 .
doi: 10.1029/2000jd900191
57 Wang Ruwen. WFM-DOAS algorithm research and application on the greenhouse gases column density retrieval[D]. Hefei:University of Science and Technology of China, 2019.
57 王汝雯. 基于WFM-DOAS温室气体柱浓度反演方法及应用研究[D]. 合肥: 中国科学技术大学, 2019.
58 Buchwitz M, de Beek R, Burrows J P, et al. Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models[J]. Atmospheric Chemistry and Physics, 2005, 5: 941-962. DOI: 10.5194/acp-5-941-2005 .
doi: 10.5194/acp-5-941-2005
59 Buchwitz M, de Beek R, Noel S, et al. Carbon monoxide, methane and carbon dioxide over China retrieved from SCIAMACHY/ENVISAT by WFM-DOAS[C]∥ ESA Special Publications, 2006, 611: 159-165.
60 Schneising O, Buchwitz M, Burrows J P, et al. Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite-Part 2:Methane[J]. Atmospheric Chemistry and Physics,2009,9(2):443-465. DOI:10.5194/acp-9-443-2009 .
doi: 10.5194/acp-9-443-2009
61 Kulawik S S, Worden J R, Payne V H, et al. Evaluation of single-footprint AIRS CH4 profile retrieval uncertainties using aircraft profile measurements[J]. Atmospheric Measurement Techniques, 2021, 14(1): 335-354. DOI: 10.5194/amt-14-335-2021 .
doi: 10.5194/amt-14-335-2021
62 Snell H E, Moncet J L, Lynch R, et al. Atmospheric temperature, moisture and trace gas retrieval algorithm for the NPOESS/NPP Cross-track Infrared Microwave Sounder Suite (CrIMSS)[C]∥ Shen S S, Lewis P E, eds. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, 2004, 5425: 375-383.
63 Boone C D, Nassar R, Walker K A, et al. Retrievals for the atmospheric chemistry experiment Fourier-transform spectrometer[J]. Applied Optics, 2005, 44(33): 7218-7231.DOI: 10.1364/ao.44.007218 .
doi: 10.1364/ao.44.007218
64 Yokota T, Suzuki M, Dubovik O V, et al. ILAS (improved limb atmospheric spectrometer) ADEOA data retrieval algorithms[C]∥ Susskind J, Singhrovy V, Tanaka S, eds. Remote Sensing: Inversion Problems and Natural Hazards. 1998,21: 393-396. DOI: 10.1016/s0273-1177(97)00919-8 .
doi: 10.1016/s0273-1177(97)00919-8
65 Zadvornykh I V, Gribanov K G, Zakharov V I, et al. The joint methane profiles retrieval approach from GOSAT TIR and SWIR spectra[C]∥ Matvienko G G, Romanovskii O A,eds. 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Proceedings of SPIE, 2017.
66 Rodgers C D. Inverse Methods for Atmospheric Sounding (Theory and Practice)/Error Analysis and Characterisation[M].Singapore: World Scientific Publishing Co.Pte.Ltd, 2000.
67 Yoshida Y, Ota Y, Eguchi N, et al. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite[J].Atmospheric Measurement Techniques, 2011, 4(4): 717-734. DOI: 10.5194/amt-4-717-2011 .
doi: 10.5194/amt-4-717-2011
68 Duan M Z, Min Q L, Li J N. A fast radiative transfer model for simulating high-resolution absorption bands[J]. Journal of Geophysical Research-Atmospheres, 2005, 110(D15). DOI: 10.1029/2004jd005590 .
doi: 10.1029/2004jd005590
69 Zou M M, Chen L F, Fan M, et al. An Improved constraint method in optimal estimation of CH4 from gosat swir observations[C]∥ IEEE eds. 2016 Ieee International Geoscience and Remote Sensing Symposium. 2016. 374-376. DOI: 10.1109/igarss.2016.7729091 .
doi: 10.1109/igarss.2016.7729091
70 Spahni R, Chappellaz J, Stocker T F, et al. Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores[J]. Science, 2005, 310(5752): 1317-1321. DOI: 10.1126/science.1120132 .
doi: 10.1126/science.1120132
71 Straume A G, Schrijver H, Gloudemans A M S, et al. The global variation of CH4 and CO as seen by SCIAMACHY[C]∥ Burrows J P, Eichmann K U. Atmospheric Remote Sensing: Earth's Surface, Troposphere, Stratosphere and Mesosphere-I,2005.821-827. DOI: 10.1016/j.asr.2005.03.027 .
doi: 10.1016/j.asr.2005.03.027
72 Hu H, Landgraf J, Detmers R, et al. Toward blobal mapping of methane with TROPOMI: First results and intersatellite comparison to GOSAT[J]. Geophysical Research Letters, 2018, 45(8): 3682-3689. DOI: 10.1002/2018gl077259 .
doi: 10.1002/2018gl077259
73 Liu Baofeng, Li Junfeng, Li Fei, et al. Analysis of spatio-temporal distribution of methane concentrations near the ground gased on GOSAT satellite[J].Geomatics World,2016, 23(5):75-79.
73 刘宝锋,李俊锋,李飞,等.基于GOSAT卫星的全球近地面甲烷浓度时空分布特征分析[J]. 地理信息世界,2016,23(5):75-79.
74 Park J, Park S, Harada I, et al. The extraction of methane sources over the global area using satellite data[C]∥ IEEE eds. 2012 IEEE International Geoscience and Remote Sensing Symposium, 2012. 1333-1336.
75 Feng Minyu, Zhang Gen, Xia Lingjun, et al. Spatial and temporal distribution of atmospheric methane in middle-low reaches of Yangtze River based on satellite observations[J]. Geochimica, 2021, 50(1): 121-132.
75 冯敏玉, 张根, 夏玲君, 等. 长江中下游六省大气甲烷柱浓度时空分布[J]. 地球化学, 2021, 50(1): 121-132.
76 Qin Lin, Yang Fumo, Chen Gangcai, et al. The variation characteristics of methane concentration in the Three Gorges reservoir area were observed by AIRS[J]. Resources Economization & Environmental Protection, 2013(12): 34-35.
76 秦林, 杨复沫, 陈刚才, 等. AIRS遥感观察三峡库区甲烷浓度变化特征[J]. 资源节约与环保, 2013(12): 34-35.
77 Xiong X Z, Barnet C, Maddy E, et al. Seven years' observation of mid-upper tropospheric methane from atmospheric infrared sounder[J]. Remote Sensing, 2010, 2(11): 2509-2530. DOI: 10.3390/rs2112509 .
doi: 10.3390/rs2112509
78 Abed F G, Halos S H. The Vertical variations of Atmospheric Methane(CH4) concentrations over selected cities in Iraq based on AIRS data[J]. Baghdad Science Journal, 2021, 18 (3):655-664. DOI: 10.21123/bsj.2021.18.3.0655 .
doi: 10.21123/bsj.2021.18.3.0655
79 Shang Lin, Tian Wenshou. Distribution of methane concentration in the world and East Asia[C]∥ The 27th Annual Meeting of the Chinese Meteorological Society on Climate Change-the Eternal Theme of Human Development,2010. Beijing China.商林, 田文寿. 全球及东亚地区甲烷浓度分布[C]∥ 第27届中国气象学会年会应对气候变化分会场—人类发展的永恒主题. 2010, 中国北京.
[1] 彭书艳,赵龙,李婷婷,韩旭军,马明国,杨帅,杨跃程. 基于宇宙射线观测的喀斯特槽谷区典型流域土壤水分反演研究[J]. 遥感技术与应用, 2021, 36(5): 997-1008.
[2] 胡路,赵天杰,施建成,李尚楠,樊东,王平凯,耿德源,肖青,崔倩,陈德清. 基于地基微波辐射观测的土壤水分反演算法评估[J]. 遥感技术与应用, 2020, 35(1): 74-84.
[3] 劳从坤,杨娜,徐少博,汤燕杰,张恒杰. 反演策略对SMOS土壤水分反演算法的影响研究[J]. 遥感技术与应用, 2020, 35(1): 65-73.
[4] 宋小霞, 王静, 储小青. 基于多普勒频移的SAR海表流场反演[J]. 遥感技术与应用, 2019, 34(2): 293-302.
[5] 王恺宁, 王修信, 黄凤荣, 罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[6] 谢亚楠,周明亮,刘志坤. 合成孔径雷达反演降雨量算法的研究进展[J]. 遥感技术与应用, 2017, 32(4): 624-633.
[7] 王兆徽,季轩梁,廖菲,宋清涛. AMSR-E的C/X双波段垂直极化亮温反演海面盐度[J]. 遥感技术与应用, 2017, 32(2): 356-362.
[8] 马媛,李弘毅,张璞,刘大锋,黄晓东,郝晓华,邵东航,王建. 利用伽马射线探测雪水当量方法的改进[J]. 遥感技术与应用, 2017, 32(1): 57-63.
[9] 吴琼,商建,仰美霖,杨虎. 基于非表面参考技术的机载双频降水反演结果分析[J]. 遥感技术与应用, 2014, 29(3): 378-385.
[10] 孙广轮,关道明,赵冬至,王新新,王祥. 星载微波遥感观测海表温度的研究进展[J]. 遥感技术与应用, 2013, 28(4): 721-730.
[11] 王新新,赵冬至,杨建洪,王 祥. 海表面盐度卫星微波遥感研究进展[J]. 遥感技术与应用, 2012, 27(5): 671-679.
[12] 田加胜,刘巧云,周 程,石 坚,邓 跃. 一种充分考虑高海况的风速反演算法研究[J]. 遥感技术与应用, 2012, 27(2): 243-247.
[13] 李福建 ,马安青 ,丁原东 ,杨俊杰,焦俊超,刘乐军 . 基于Landsat数据的城市热岛效应研究[J]. 遥感技术与应用, 2009, 24(4): 553-558.
[14] 朱利,顾行发,王桥,余涛,李莉. 我国东海海面温度定量遥感反演研究[J]. 遥感技术与应用, 2008, 23(5): 495-499.
[15] 尹红刚, 张德海. 使用BG 反演算法细分重建微波辐射计图像[J]. 遥感技术与应用, 2006, 21(2): 120-124.