Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (4): 1012-1020    DOI: 10.11873/j.issn.1004-0323.2022.4.1012
遥感应用     
兰州市削山造地区域生态变化遥感评价方法
高小龙1,2,3,4(),闫浩文1,2,3(),王桂钢1,2,3,白建荣4
1.兰州交通大学测绘与地理信息学院,甘肃 兰州 730070
2.地理国情监测技术应用国家地方联合工程研究中心,甘肃 兰州 730070
3.甘肃省地理国情监测工程实验室,甘肃 兰州 730070
4.甘肃省地图院,甘肃 兰州 730000
Approach to Remote Sensing Assessment of Ecological Changes of Land Creation in Lanzhou City
Xiaolong Gao1,2,3,4(),Haowen Yan1,2,3(),Guigang Wang1,2,3,Jianrong Bai4
1.Faculty of Geomatics,Lanzhou Jiaotong University,Lanzhou 730070,China
2.National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring,Lanzhou 730070,China
3.Gansu Provincial Engineering Laboratory for National Geographic State Monitoring,Lanzhou 730070,China
4.Mapping Institutiion of Gansu province,Lanzhou 730000,China
 全文: PDF(3771 KB)   HTML
摘要:

针对现有方法无法准确提取削山造地范围以及定量评价削山造地区域生态变化问题,由此提出了基于三维地形变化的削山造地范围提取方法;同时,基于1991、2001、2009和2016年遥感影像,以绿度、湿度、热度和干度指标构建遥感生态指数(Remote Sensing Ecological Index, RSEI),对比分析4个时期生态质量时空变化。结果表明:RSEI不仅能够定量反映生态环境质量,而且可以空间化可视化。1991—2016年,兰州市周边削山造地工程面积不断增加,RSEI值由1991年的0.297上升至2016年的0.406,兰州市生态环境质量整体呈上升趋势,但是具有明显的空间差异。生态变差区域集中在兰州主城区北部山区、兰州新区东南部的削山造地工程范围,削山造地工程致使建筑用地和裸土地激增,植被覆盖度降低,表明削山造地工程对区域生态环境质量有一定影响,因此应该控制削山造地工程规模,加强保护生态脆弱区域环境。

关键词: 遥感生态指数削山造地地表覆盖    
Abstract:

To solve the problem that the existing methods cannot accurately extract the land creation region and quantitatively assess the ecological change of the land creation region, This paper proposed a method to extract the land creation region based 3D terrain change. Based on the remote sensing images of 1991,2001,2009 and 2016,the Remote Sensing Ecological Index(RSEI) was established based on the indexes of greenness, humidity, heat and dryness. The results showed that RSEI can not only quantitatively reflect the quality of ecological environment, but also can be spatially visualized. From 1991 to 2016,the area of land creation region continued to increase. The RSEI increased from 0.297 in 1991 to 0.406 in 2016.The overall ecological environmental quality of Lanzhou was an upward trend, but it had obvious spatial difference. The ecological deterioration areas were concentrated in land creation region of the northern mountainous area of Lanzhou and the southeast of Lanzhou New Area. The land creation project resulted in the expansion of built-up land and bare land, and the decrease of vegetation coverage. It indicated that the land creation project has a certain impact on the regional quality of ecological environment. Therefore, we should control the scale of land creation project,and protect the environment of fragile ecological region.

Key words: Remote sensing ecological index    Land creation    Land cover
收稿日期: 2021-01-24 出版日期: 2022-09-28
:  P237  
基金资助: 国家重点研发计划项目(2017YFB0504203);甘肃省自然资源科技项目资助
通讯作者: 闫浩文     E-mail: 381940392@qq.com;58391794@qq.com
作者简介: 高小龙(1989-),男,甘肃通渭人,高级工程师,主要从事遥感应用研究。E?mail: 381940392@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
高小龙
闫浩文
王桂钢
白建荣

引用本文:

高小龙,闫浩文,王桂钢,白建荣. 兰州市削山造地区域生态变化遥感评价方法[J]. 遥感技术与应用, 2022, 37(4): 1012-1020.

Xiaolong Gao,Haowen Yan,Guigang Wang,Jianrong Bai. Approach to Remote Sensing Assessment of Ecological Changes of Land Creation in Lanzhou City. Remote Sensing Technology and Application, 2022, 37(4): 1012-1020.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.4.1012        http://www.rsta.ac.cn/CN/Y2022/V37/I4/1012

图1  研究区位置
图2  兰州周边地区遥感影像
图3  研究流程图
图4  兰州周边地区削山造地工程范围分布
图5  标准差椭圆和重心
年份指标PC1PC2PC3PC4
1991绿度0.460.430.190.75
湿度0.52-0.630.56-0.10
热度-0.570.230.790.02
干度-0.44-0.60-0.150.65
特征值0.06030.01240.00680.0002
贡献率75.66%15.56%8.53%0.25%
2001绿度0.540.330.29-0.72
湿度0.46-0.700.500.22
热度-0.550.220.810.02
干度-0.45-0.59-0.13-0.66
特征值0.04930.01290.00700.0003
贡献率70.94%18.56%10.07%0.43%
2009绿度0.400.460.31-0.73
湿度0.49-0.530.660.21
热度-0.720.160.67-0.01
干度-0.28-0.69-0.14-0.65
特征值0.03660.01290.00550.0003
贡献率66.18%23.33%9.95%0.54%
2016绿度0.550.28-0.03-0.79
湿度0.39-0.450.800.08
热度-0.410.690.60-0.06
干度-0.61-0.500.08-0.61
特征值0.03810.00790.00440.0007
贡献率74.56%15.46%8.61%1.37%
表1  4个指标的主成分分析
图6  1991、2001、2009、2016年RSEI影像图
年份绿度/NDVI湿度/WETNESS热度/LST干度/BCIRSEI指数
均值标准差均值标准差均值标准差均值标准差均值标准差
19910.4280.1250.3070.1540.6820.1560.5170.1270.2970.187
20010.3440.1290.2680.1360.6540.1420.5230.1200.2720.181
20090.4350.0970.2760.1210.6950.1480.4820.0960.3090.160
20160.5180.1120.5240.1000.4750.2050.4630.1290.4060.168
表2  RSEI均值
RSEI分级1991年2001年2009年2016年
面积/km2比例/%面积/km2比例/%面积/km2比例/%面积/km2比例/%
差(0—0.2)3 700.6451.763 765.6452.672 934.7341.051 408.3019.70
较差(0.2—0.4)2 284.6231.962 306.4632.262 817.1239.413 175.5644.42
中(0.4—0.6)626.568.76582.548.15873.6412.221 727.4824.16
良(0.6—0.8)302.314.23272.943.82356.264.98584.168.17
优(0.8—1)235.313.29221.853.10167.682.35253.933.55
表3  生态等级面积和比例变化
图7  1991—2016年RSEI变化检测图
类别级差级面积/km2类面积/km2比例/%
变差-410.81565.797.91
-341.30
-2106.01
-1407.68
不变02 599.562 599.5636.36
变好13 273.163 984.0855.73
2624.92
367.33
418.67
表4  变化检测
RSEI分级1991年2016年
面积/km2比例/%面积/km2比例/%
差 (0.0—0.2)1.700.84167.2482.47
较差(0.2—0.4)153.5375.7130.1814.88
中等(0.4—0.6)37.3618.424.712.32
良 (0.6—0.8)8.073.980.670.33
优 (0.8—1.0)2.141.060.000.00
表5  削山造地区生态等级面积和比例
区域植被覆盖度/%地表温度/oCRSEI
2009年2016年2009年2016年2009年2016年
2009—2016年削山造地范围23.114.535.935.90.2470.121
2009—2016年削山造地范围缓冲区25.023.034.735.30.2910.219
表6  2009—2016年削山造地范围及其缓冲区植被覆盖度、地表温度及RSEI值变化
1 Li P, Qian H, Wu J. Accelerate research on land creation[J]. Nature,2014,510(7503):29-31. DOI:10.1038/510029a .
doi: 10.1038/510029a
2 Ministry of Ecology and Environment, , Technical Criterion for Ecosystem Status Evaluation [S].Beijing:China Environmental Science Press,2015.
2 生态环境部, ,生态环境状况评价技术规范[S]. 北京:中国环境科学出版社,2015.
3 Wang Hongwei, Zhang Xiaolei, Qiao Mu, et al. Assessment and dynamic analysis of the eco-environmental quality in the Ili River Basin based on GIS[J]. Arid Land Geography,2008,31(2):215-221.
3 王宏伟,张小雷,乔木,等. 基于GIS的伊犁河流域生态环境质量评价与动态分析[J]. 干旱区地理,2008,31(2):215-221.
4 Wang Peng, Wei Xin, Qiao Yuliang. Quality evaluation and time sequential analysis of eco-environment at multi-scales in Fen River Basin[J]. Remote Sensing Technology and Application,2011,26(6):798-807.
4 王鹏,魏信,乔玉良. 多尺度下汾河流域生态环境质量评价与时序分析[J].遥感技术与应用,2011,26(6):798-807.
5 Xu Hanqiu. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica,2013,33(24):7853-7862.
5 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报,2013,33(24):7853-7862.
6 Shi Tingting, Xu Hanqiu, Sun Fengqin. Remote sensing based assessment of regional ecological changes triggered by a construction project[J] .Acta Ecologica Sinica,2019,39(18):6826-6839.
6 施婷婷,徐涵秋,孙凤琴,等. 建设项目引发的区域生态变化的遥感评估——以敖江流域为例[J]. 生态学报,2019,39(18):6826-6839.
7 Cheng Zhifeng, He Qisheng. Remote sensing evaluation of the ecological environment of Su-Xi-Chang City group based on Remote Sensing Ecological Index (RSEI)[J]. Remote Sensing Technology and Application,2019,34(3):531-539.
7 程志峰,何祺胜. 基于RSEI的苏锡常城市群生态环境遥感评价[J]. 遥感技术与应用,2019,34(3):531-539.
8 Wen Xiaole, Lin Zhengfeng, Tang Fei. Remote sensing analysis of ecological change caused by construction of the new island city Pingtan Comprehensive Experimental Zone,Fujian province[J]. Chinese Journal of Applied Ecology,2015,26(2):541-547.
8 温小乐,林征峰,唐菲. 新兴海岛型城市建设引发的生态变化的遥感分析——以福建平潭综合实验区为例[J]. 应用生态学报,2015,26(2):541-547.
9 Xu Hanqiu. A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science,2013,33(5):889-897.
9 徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学,2013,33(5):889-897.
10 Deng C B, Wu C S. BCI: A biophysical composition index for remote sensing of urban environment[J].Remote Sensing Environment of,2012,127(140):247-259. DOI:10.1016/j.rse.2012.09.009
doi: 10.1016/j.rse.2012.09.009
11 Liu Weihui, Yu Daijun, Li Hongzhou, et al. Research on 3D terrain quantitative change detection in Shendong Mining Area[J].Goespatial Information,2017,15(12):22-24.
11 刘威辉,余代俊,李鸿洲,等. 神东矿区三维地形定量变化检测研究[J]. 地理空间信息,2017,15(12):22-24.
12 Gao Ning, Gai Yingchun, Song Xiaoyu. Study of urban expansion and driving factors in Xi’an city based on nighttime light data[J]. Remote Sensing Technology and Application,2019,34(1):207-215.
12 高宁,盖迎春,宋晓谕. 基于夜间灯光数据的西安市城市扩张及驱动因素研究[J]. 遥感技术与应用,2019,34(1):207-215.
13 Xu Hanqiu, Deng Wenhui. Rationality analysis of MRSEI and its difference with RSEI[J]. Remote Sensing Technology and Application,2022,37(1):1-7.
13 徐涵秋,邓文慧. MRSEI指数的合理性分析及其与RSEI指数的区别[J]. 遥感技术与应用,2022,37(1):1-7.
14 Goward S N, Xue Y K, Czajkowski K P. Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements an exploration with the simplified simple biosphere model[J]. Remote Sensing of Environment,2002,79(2/3):225-242. DOI:10.1016/S0034-4257(01)00275-9 .
doi: 10.1016/S0034-4257(01)00275-9
15 Wang Shiyuan, Zhang Xuexia, Zhu Tong, et al. Assessment of ecological environment quality in the Changbai Mountain Nature Reserve based on remote sensing technology[J]. Progress in Geography,2016,35(10):1269-1278
15 王士远,张学霞,朱彤,等. 长白山自然保护区生态环境质量的遥感评价[J]. 地理科学进展,2016,35(10):1269-1278.
16 Li Yali, Wang Xiaoxin, Chen Yunzhi, et al. The correlation analysis of land surface temperature and fractional vegetation coverage in Fujian province[J]. Journal of Geo-Information Science,2019,21(3):445-454.
16 李娅丽,汪小钦,陈芸芝,等. 福建省地表温度与植被覆盖度的相关性分析[J]. 地球信息科学学报,2019,21(3):445-454.
17 Nichol J. Remote sensing of urban heat islands by day and night[J]. Photogrammetric Engineering and Remote Sensing,2005,71(6):613-621.DOI:10.14358/PERS.71.5.613 .
doi: 10.14358/PERS.71.5.613
18 Xu Hanqiu, Wang Meiya. Remote sensing based retrieval of ground impervious surfaces[J].Journal of Remote Sensing,2016,20(5):1270-1289.
18 徐涵秋,王美雅.地表不透水面信息遥感的主要方法分析[J]. 遥感学报,2016,20(5):1270-1289.
19 Ye Peilong, Zhang Qiang, Wang Ying, et al. Climate change in the upper Yellow River Basin and its impact on ecological vegetation and runoff from 1980 to 2018 s[J]. Trans Atmos Sci,2020,43(6):967-979.
19 叶培龙,张强,王莺,等.1980—2018年黄河上游气候变化及其对生态植被和径流量的影响[J]. 大气科学学报,2020,43(6):967-979.
20 Duan Hanchen, Yan Changzhen, Ma Rulan, et al. Ecosystem construction effects in Southern and Northern Mountains of Lanzhou by remote sensing monitoring[J] Journal of Desert Search,2011,31(2):456-463.
20 段翰晨,颜长珍,马如兰,等. 兰州市南北两山生态建设效应的遥感监测[J]. 中国沙漠,2011,31(2):456-463.
21 Liu Mengying, Jiang Fan, Liu Yong. Land use pattern changes over the last two decades in Qinwangchuan area,Lanzhou,China[J]. Journal of Arid Land Resources and Environmen,2016,30(11):111-116.
21 刘梦莹,江帆,刘勇. 过去20年兰州新区秦王川地区土地利用景观格局变化[J]. 干旱区资源与环境,2016,30(11):111-116.
[1] 盖一铭,阿里木·赛买提,王伟,吉力力·阿不都外力. 基于样本迁移的干旱区地表覆盖快速更新[J]. 遥感技术与应用, 2022, 37(2): 333-341.
[2] 庄元, 薛东前, 匡文慧, 迟文峰, 潘涛. 中国半干旱区呼包鄂城市群地表覆盖等级结构时空特征研究[J]. 遥感技术与应用, 2019, 34(1): 197-206.
[3] 冀新莹, 韦玉春, 王问尧, 方宏. 城镇区域高分辨率遥感影像地表覆盖变化检测的误差分析[J]. 遥感技术与应用, 2018, 33(5): 932-941.
[4] 王颖洁,刘良云,王志慧. 基于时序Landsat数据的三江平原植被地表类型变化遥感探测研究[J]. 遥感技术与应用, 2015, 30(5): 959-968.
[5] 杨 娟, 陈洪滨, 王开存, 王振会. 利用MODIS卫星资料分析北京地区地表反照率时空分布及变化特征[J]. 遥感技术与应用, 2006, 21(5): 403-406.