Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (4): 897-907    DOI: 10.11873/j.issn.1004-0323.2022.4.0897
灯光遥感专栏     
基于夜间灯光的2000—2018年成渝地区城市化过程研究
王晗1,2(),胡自远3(),李付全3,周玉科1,2
1.中国科学院地理科学与资源研究所 生态系统网络观测与模拟重点实验室,北京 100101
2.中国科学院大学,北京 100049
3.山东省地质矿产勘查开发局第七地质大队,山东 临沂 276000
Research on the Spatial-Temporal Process of Urbanization in Chengdu-Chongqing Region based on Nighttime Light from 2000 to 2018
Han Wang1,2(),Ziyuan Hu3(),Fuquan Li3,Yuke Zhou1,2
1.Key Laboratory of Ecosystem Network Observation and Modeling,Institute of Geographic and Nature Resources Research,Chinese Academy of Sciences,Beijing 100101,China
2.University of Chinese Academy of Sciences,Beijing 100049,China
3.No. 7 Geological Brigade,Shandong Bureau of Geology and Mineral Resources Exploration and Development,Linyi 27600,China
 全文: PDF(6891 KB)   HTML
摘要:

成渝城市群正逐步成为我国西部经济发展的增长极,探索其城市化时空格局对区域协调发展具有指引作用。基于2000—2018年整合夜光遥感数据提取城市群多期建成区空间范围,运用夜光规模统计、标准椭圆、位序—规模法则以及空间自相关等指标、模型定量分析了成渝区域城市化时空过程。结果表明:①灯光与统计数据配合下的建成区提取多年平均误差为1.27%,重庆、成都和绵阳市提取验证效果好;②19年间成渝各城市夜光规模显著增长,整体累计增长5.6倍,2010年后成渝城市群灯光规模扩张速度显著;③区域内各城市的位序—规模(rank-size)由高位序城市集中发展转向区域协调均衡发展,中小城市均有不同程度的扩张;④城市群规模重心位于四川资阳市安岳县,重心移动整体上以东南方向为主,空间格局整体呈现以“成都—重庆”为轴线沿西北向东南演变,空间范围逐渐扩张,说明以重庆为主的东南都市圈的社会经济形势更显著,对城市群发展更具影响力;⑤成渝城市群扩展的空间集聚程度逐渐加强,冷热点格局整体呈现冷点区占比大,热点区占比低的特征,热点区主要出现在位于成都与重庆主城区及其周边城镇。研究揭示了成渝城市群均衡发展的特征及热点区域,可作为未来城市功能规划和投资决策的参考。

关键词: 夜间灯光城镇扩展位序-规模法则时空演变特征成渝城市群    
Abstract:

Chengdu-Chongqing urban agglomeration is gradually becoming the growth pole of economic development in western China. Exploring the spatial and temporal pattern of urbanization in Chengdu-Chongqing urban agglomeration has a guiding role for regional coordinated development. Based on the integrated nighttime light remote sensing data from 2000 to 2018, this paper extracted the spatial scope of multi-stage built-up areas of urban agglomerations, using noctilucent scale statistics, standard ellipse, rank-size rule and spatial autocorrelation and other indicators and models to quantitatively analyze the spatial and temporal process of urbanization in this region. The main conclusions are as follows: (1) the multi-year average error of the built-up area extraction with the combination of light and statistical data is 1.27%, which is effective in Chongqing, Chengdu and Mianyang. (2) In the past 19 years, the scale of noctilucent in Chengdu-Chongqing cities increased significantly, with an overall cumulative increase of 5.658 times. After 2010, the scale of light in Chengdu-Chongqing urban agglomeration expanded significantly; (3) The rank-scale of cities in the region shifted from the concentrated development of high-ranking cities to the coordinated and balanced development of the region, and small and medium-sized cities all expanded to varying degrees; (4) The center of gravity of urban agglomeration is located in Anyue County, Ziyang City, Sichuan Province. The center of gravity movement is mainly in the southeast direction, and the spatial pattern evolves along the axis of "Chengdu-Chongqing" from northwest to southeast, indicating that the southeast metropolitan circle dominated by Chongqing has a stronger radiating and driving role and has more influence on the development of urban agglomeration. (5) The spatial agglomeration degree of Chengdu-Chongqing urban agglomeration is gradually strengthened. The overall pattern of cold hot spots is characterized by a large proportion of cold spots and a low proportion of hot spots. The hot spots are mainly located in the main urban areas of Chengdu and Chongqing and their surrounding towns. This study reveals the characteristics and hotspots of balanced development of Chengdu-Chongqing urban agglomeration, which can be used as a reference for future urban function planning and investment decisions.

Key words: Nighttime light    Urban expansion    Rank-size rule    Temporal-spatial evolution characteristic    Chengdu-Chongqing urban agglomeration
收稿日期: 2021-11-08 出版日期: 2022-09-28
:  P237  
基金资助: 国家重点研发计划项目(2018YFB0505301)
通讯作者: 胡自远     E-mail: wanghanzora@163.com;hzy0618@163.com
作者简介: 王 晗(2000-),女,四川广安人,硕士研究生,主要从事夜间灯光遥感研究。E?mail:wanghanzora@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王晗
胡自远
李付全
周玉科

引用本文:

王晗,胡自远,李付全,周玉科. 基于夜间灯光的2000—2018年成渝地区城市化过程研究[J]. 遥感技术与应用, 2022, 37(4): 897-907.

Han Wang,Ziyuan Hu,Fuquan Li,Yuke Zhou. Research on the Spatial-Temporal Process of Urbanization in Chengdu-Chongqing Region based on Nighttime Light from 2000 to 2018. Remote Sensing Technology and Application, 2022, 37(4): 897-907.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.4.0897        http://www.rsta.ac.cn/CN/Y2022/V37/I4/897

图1  研究区域图
图2  DMSP/OLS和NPP/VIIRS数据的拟合关系
城市建成区划分阈值(DN值)
2000年2005年2010年2015年2018年
成都市46.0050.0055.0053.4152.78
重庆市39.0047.0041.0046.9048.92
德阳市30.0049.0052.0050.8751.52
广安市20.0045.0038.0050.2349.57
乐山市17.0029.0035.0046.9049.57
泸州市22.0031.0024.0041.2444.13
眉山市24.0028.0036.0045.5348.25
绵阳市45.0044.0053.0048.9249.57
南充市32.0045.0046.0049.5752.15
内江市18.0039.0034.0048.2549.57
遂宁市14.0041.0043.0047.5849.57
雅安市19.0024.0030.0042.7046.22
宜宾市22.0040.0031.0043.4246.22
达州市26.0051.0042.0045.5347.58
资阳市22.0038.0039.0044.1350.23
自贡市17.0034.0028.0039.7444.83
表1  各城市不同时期建成区提取阈值表
图3  重庆市与成都市多年建成区提取结果图
图4  各个城市夜间灯光规模统计图
图5  成渝城市群夜间灯光增长情况
图6  各城市夜间灯光累积增速图
图7  成渝城市群位序-规模双对数变化图
图8  成渝城市群重心迁移情况
城市群Moran’s I
2000—20052005—20102010—20152015—2018
成渝城市群-0.430-0.0080.0830.134
表2  成渝城市群不同时期城市扩展全局自相关指数
图9  成渝城市群城市空间扩展热点分析
1 Xinhua News Agency. Xi Jinping Presided over the Sixth Meeting of the Financial and Economic Commission of the Central Financial and Economic Commission: Emphasizing ecological protection and high-quality development of the Yellow River Basin and vigorously promoting the construction of Chengdu-Chongqing Economic Circle [J]. Contemporary Party Member, 2020(2): 11.
1 新华社. 习近平主持召开中央财经委员会第六次会议强调:抓好黄河流域生态保护和高质量发展大力推动成渝地区双城经济圈建设[J]. 当代党员,2020(2): 11.
2 Research Group of Institute of Land Development and Regional Economy, Chinese Academy of Macroeconomic Research, GaoGuoli, LiuBaokui, et al. Study on the evolution characteristics and trend of Chinese urbanization spatial form[J]. Revolution, 2020(9):128-138.
2 中国宏观经济研究院国土开发与地区经济研究所课题组,高国力,刘保奎,等. 我国城镇化空间形态的演变特征与趋势研判[J]. 改革,2020(9): 128-138.
3 State Council of the People's Republic of China. Approval of the State Council on the development plan of Chengdu-Chongqing Urban Agglomeration [J]. Bulletin of the State Council of the People's Republic of China, 2016(12):27-28.
3 中华人民共和国国务院. 国务院关于成渝城市群发展规划的批复[J]. 中华人民共和国国务院公报,2016(12):27-28.
4 Li Junfeng, Pan Jinghu. Spatial expansion of cities at county-level in Gansu Province from 1992 to 2012 based on DMSP nighttime images[J]. Journal of Glaciology and Geocryology, 2016, 38(3): 829-835.
4 李俊峰,潘竟虎. 基于夜间灯光的1992-2012年甘肃省城市空间扩展研究[J]. 冰川冻土, 2016, 38(3): 829-835.
5 Zhang Dacheng. Research on the development trajectory of Hangzhou bay urban agglomeration based on nighttime remote sensing[D]. Hangzhou: Zhejiang University, 2019.
5 张大成. 基于夜光遥感的杭州湾城市群发展轨迹研究[D]. 杭州: 浙江大学, 2019.
6 Gao B, Huang Q X, He C Y, et al. Dynamics of urbanization levels in China from 1992 to 2012: Perspective from DMSP/OLS nighttime light data[J]. Remote Sensing, 2015, 7(2): 1721-1735. DOI: 10.3390/rs70201721 .
doi: 10.3390/rs70201721
7 Wang Hua, Zheng Bohong, Wang Zhiyuan. A study of the evolution characteristics of built-up areas in Chang-Zhu-Tan urban agglomeration based on DMSP/OLS data[J].Remote Sen-sing for Land & Resources, 2020,32(4):175-184.
7 汪华,郑伯红,王志远. 基于DMSP/OLS数据的长株潭城市群建成区演变特征研究[J]. 国土资源遥感,2020,32(4):175-184.
8 Zhu Shunjuan. Spatial structure and optimization of Changsha-Zhuzhou-Xiangtan urban agglomeration[D]. Changsha: Central South University, 2012.
8 朱顺娟. 长株潭城市群空间结构及其优化研究[D]. 长沙: 中南大学, 2012.
9 Qiu Yaqian. Spatial-temporal pattern evolution analysis of urban agglomeration in the middle reaches of the Yangtze River based on nighttime light remote sensing image[D]. Wuhan: Wuhan University, 2019.
9 仇雅倩. 基于夜光遥感影像的长江中游城市群时空格局演变分析[D]. 武汉: 武汉大学, 2019.
10 Li Guihua, Fan Junfu, Zhou Yuke, et al. Development and characteristics estimation of Shandong peninsula urban agglomeration using VIIRS night-light data[J]. Remote Sensing Technology and Application, 2020, 35(6): 1348-1359.
10 李桂华,范俊甫,周玉科,等. 基于VIIRS夜间灯光数据的山东半岛城市群发展特征研究[J]. 遥感技术与应用, 2020, 35(6): 1348-1359.
11 Dong Chenwei, Cao Yu, Tan Yongzhong. Urban expansion and vegetation changes in Hangzhou bay area using night-light data[J]. Chinese Journal of Applied Ecology, 2017,28(1): 231-238.
11 董晨炜,曹宇,谭永忠. 基于夜间灯光数据的环杭州湾城市扩张及植被变化[J]. 应用生态学报, 2017,28(1): 231-238.
12 Alahmadi M, Atkinson P M. Three-fold urban expansion in Saudi Arabia from 1992 to 2013 observed using calibrated DMSP-OLS night-time lights imagery[J]. Remote Sensing, 2019, 11(19): 2266. DOI:10.3390/rs11192266 .
doi: 10.3390/rs11192266
13 He Chunyang, Shi Peijun, Li Jinggang, et al. Reconstruction of the spatial process of urbanization in the 1990s in mainland China based on DMSP/OLS night-light data and statistics[J]. Chinese Science Bulletin,2006,51(7):856-861.
13 何春阳,史培军,李景刚,等. 基于DMSP/OLS夜间灯光数据和统计数据的中国大陆20世纪90年代城市化空间过程重建研究[J]. 科学通报, 2006,51(7):856-861.
14 Zhang Wenbin, Zhang Zhibin, Zhou Yi, et al. Temporal-spatial evolution characteristics of Lanxi urban agglomeration based on night-light data[J]. Remote Sensing Information, 2020, 35(6): 38-43.
14 张文斌,张志斌,周翼,等. 基于夜间灯光数据的兰西城市群时空演变特征[J]. 遥感信息, 2020, 35(6): 38-43.
15 Yang Renfei, Luo Hongxia, Zhou Sheng, et al. Restoring and analyzing the space forming process of Chengdu-Chongqing urban agglomeration by using DMSP/OLS night-light data[J]. Journal of Geo-information Science,2017,19(5):77-85.
15 杨任飞,罗红霞,周盛,等. 夜间灯光数据驱动的成渝城市群空间形成过程重建及分析[J]. 地球信息科学学报,2017,19(5):77-85.
16 Liang Rubing, Chen Qingtao, Xia Zhiye, et al. Monitoring and analysis of urbanization process in Chengdu-Chongqing region using VANUI index[J]. Geomatics and Mapping Information, 2021, 46(S1): 210-215.
16 梁茹冰,陈庆涛,夏至业,等. 利用VANUI指数监测成渝地区的城市化进程与分析[J]. 测绘地理信息, 2021,46():210-215.
17 Dai Z X, Hu Y F, Zhao G H. The suitability of different nighttime light data for GDP estimation at different spatial scales and regional levels[J]. Sustainability, 2017, 9(2):305. DOI:10.3390/su9020305 .
doi: 10.3390/su9020305
18 Shi K F, Huang C, Yu B L, et al. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas[J]. Remote Sensing Letters, 2014, 5(4-6): 358-366. DOI:10.1080/2150704X.2014.905728 .
doi: 10.1080/2150704X.2014.905728
19 Li X C, Zhou Y Y, Zhao M, et al. A harmonized global nighttime light dataset 1992-2018[J]. Scientific Data, 2020, 7(1). DOI: 10.1038/s41597-020-0510-y .
doi: 10.1038/s41597-020-0510-y
20 Sun Qinke, Zhou Liang, Shen Ruru, et al. Spatial heterogeneity of urban land use in Yangtze River economic belt based on DMSP/OLS data[J]. Remote Sensing Information, 2019, 34(4): 79-86.
20 孙钦珂,周亮,申如如,等. 基于DMSP/OLS数据的长江经济带城市用地空间分异特征[J]. 遥感信息, 2019,34(4):79-86.
21 Sun Lingwei. Discussion on urban expansion in Shandong Province based on Landsat data and DMSP/OLS night-light data[D]. Chongqing: Chongqing Normal University, 2017.
21 孙凌蔚. 基于Landsat数据和DMSP/OLS夜间灯光数据的山东省城市扩张探讨[D]. 重庆: 重庆师范大学, 2017.
22 George K. Human behavior and the principle of least effort: An introduction to human ecology[M]. Cambridge, Mass.: Addison-Wesley, 1949. DOI: 10.1126/science.110.2868.669 .
doi: 10.1126/science.110.2868.669
23 Miller H J. Tobler's first law and spatial analysis[J]. Annals of the Association of American Geographers, 2004, 94(2): 284-289. DOI:10.1111/j.1467-8306.2004.09402005.x .
doi: 10.1111/j.1467-8306.2004.09402005.x
[1] 魏石梅,潘竟虎. 基于夜间灯光和微博签到数据的郑州市城市空间结构识别[J]. 遥感技术与应用, 2022, 37(3): 771-780.
[2] 刘贤赵,杨旭. 夜间灯光数据估算中国省域碳排放与国际碳数据库分配的碳排放比较[J]. 遥感技术与应用, 2022, 37(2): 319-332.
[3] 张爱华,潘耀忠,明艳芳,王金云. 多源信息耦合的GDP空间化研究—以北京市为例[J]. 遥感技术与应用, 2021, 36(2): 463-472.
[4] 贺蕾,潘竟虎,董磊磊. 基于遥感和微博签到数据的住房空置空间识别[J]. 遥感技术与应用, 2020, 35(4): 820-831.
[5] 白贺庭, 马明国, 阎然, 刘康甯, 隽楚涵. 基于夜间灯光数据的重庆市城市扩张研究[J]. 遥感技术与应用, 2019, 34(1): 216-224.
[6] 周玉科,高锡章,倪希亮. 利用夜间灯光数据分析我国社会经济发展的区域不均衡特征[J]. 遥感技术与应用, 2017, 32(6): 1107-1113.
[7] 周孝明,刘军,胡燕凌. 高分卫星在甘肃省城镇扩展研究中的应用[J]. 遥感技术与应用, 2017, 32(3): 531-538.
[8] 赵峰,汪云甲,闫世勇. 时序InSAR技术地表沉降监测结果可靠性及沉降梯度分析[J]. 遥感技术与应用, 2015, 30(5): 969-979.
[9] 舒松,余柏蒗 ,吴健平,刘红星. 基于夜间灯光数据的城市建成区提取方法评价与应用[J]. 遥感技术与应用, 2011, 26(2): 169-176.
[10] 杨眉,王世新,周艺,王丽涛. DMSP/OLS夜间灯光数据应用研究综述[J]. 遥感技术与应用, 2011, 26(1): 45-51.
[11] 杨勇,任志远. 基于GIS的西安市城镇建设用地扩展研究[J]. 遥感技术与应用, 2009, 24(1): 46-51.