Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (4): 993-1002    DOI: 10.11873/j.issn.1004-0323.2022.4.0993
遥感应用     
内陆水体悬浮物波段比值优化模型及藻类丰度对模型精度影响研究
赵方睿1,2(),王强2,温志丹2,刘晓静2,尚盈辛2,陶慧2,杜云霞2,宋开山2()
1.吉林师范大学旅游与地理科学学院,吉林 四平 136000
2.中国科学院东北地理与农业生态研究所,吉林 长春 130102
Optimization Model of Suspended Matter Band Ratio in Inland Water and Influence of Algae Abundance on Model Accuracy
Fangrui Zhao1,2(),Qiang Wang2,Zhidan Wen2,Xiaojing Liu2,Yingxin Shang2,Hui Tao2,Yunxia Du2,Kaishan Song2()
1.College of Tourism and Geography,Jilin Normal University,Siping 136000,China
2.Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Changchun 130102,China
 全文: PDF(3551 KB)   HTML
摘要:

内陆水体中浮游植物的存在对悬浮物(TSM)遥感反演模型精度具有一定的影响,藻类丰度会导致水体遥感反射率降低。实验基于中国、澳大利亚和美国内陆水体的372个采样点(4个数据集)水质分析和光谱实测数据,构建内陆水体遥感反射率与TSM的相关关系,建立最优波段比模型(OBR),并分析了藻类颗粒物存在对该模型精度的影响。由于水质的不均一性,不同区域的水质参数敏感波段存在差异,因此各数据集用于建模的最优波段比值不同。结果表明,OBR模型精度较高,误差较小,中国水体模型验证均具有较好效果(石头口门水库:R2=0.87,RMSE=14.1 mg/L;查干湖:R2=0.82,RMSE=23.6 mg/L),澳大利亚水体模型验证效果最佳,R2值高达0.95(RMSE=4.2 mg/L),美国水体模型精度较低(R2=0.78,RMSE=3.7 mg/L)。研究发现,模型精度受水体叶绿素(Chla)浓度和Chla/TSM比率影响,当水体以TSM浓度较高的非藻类颗粒物为主时(如中国石头口门水库和南澳洲地区水体数据集),最优波段比值模型表现更好;而当水体以浮游植物为主时,水体中的浮游植物的丰度会使光谱信号复杂化,从而限制或降低TSM浓度遥感算法的精度(如美国印第安纳州中部水库数据集)。

关键词: 遥感反演模型构建悬浮物叶绿素最优波段比值模型    
Abstract:

The presence of inland phytoplankton in inland water has a certain impact on the accuracy of Total Solid Matter(TSM) inversed remote sensing model, and the abundance of algae will influence the decreasing of remote sensing reflectance of water. Based on in situ dataset of water quality and spectrum of 372 sampling points across China, Australia and the United States, the relationship between the reflectance of water body and TSM is established and the Optimal Band Ratio(OBR) model is applied to analyze the influence of algae particles on the accuracy of the model. Due to the unbalance of water quality parameters in various regions, the sensitive bands of water quality parameters varies in different regions, therefore the optimal band ratio used for modeling in each dataset is different. The results show that the high accuracy of OBR model is observed with low errors. The model validation for two water bodies in China have a good performance (STKM: R2=0.87, RMSE=14.1; CGH: R2=0.82, RMSE=23.6). The validation of Australian waterbody achieves high coefficient of 0.95 (R2 =0.95, RMSE=4.2), while the model applied to American water body has a lower accuracy (R2=0.78, RMSE=3.7). It is found that the model accuracy is affected by Chla concentration and Chla/TSM ratio. When the water is dominated by non-algal particles with high TSM concentration (such as water datasets from Shitoukoumen, China and South Australia), the model of optimal band ratio performs better. However, when the water body is dominated by phytoplankton, the water body will complicate the spectral signal, thus limiting or reducing the accuracy of remote sensing algorithm (such as the water body data set in central Indiana, USA).

Key words: Remote sensing inversion    Model construction    Total suspended solids    Chlorophyll-a    OBR
收稿日期: 2021-03-04 出版日期: 2022-09-28
:  X87  
基金资助: 国家自然科学基金重点项目(41730104);吉林省自然科学基金学科布局项目(20200201054JC)
通讯作者: 宋开山     E-mail: 935239274@qq.com;songks@iga.ac.cn
作者简介: 赵方睿(1996-),女,吉林四平人,硕士研究生,主要从事遥感与地理信息系统研究。E?mail:935239274@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵方睿
王强
温志丹
刘晓静
尚盈辛
陶慧
杜云霞
宋开山

引用本文:

赵方睿,王强,温志丹,刘晓静,尚盈辛,陶慧,杜云霞,宋开山. 内陆水体悬浮物波段比值优化模型及藻类丰度对模型精度影响研究[J]. 遥感技术与应用, 2022, 37(4): 993-1002.

Fangrui Zhao,Qiang Wang,Zhidan Wen,Xiaojing Liu,Yingxin Shang,Hui Tao,Yunxia Du,Kaishan Song. Optimization Model of Suspended Matter Band Ratio in Inland Water and Influence of Algae Abundance on Model Accuracy. Remote Sensing Technology and Application, 2022, 37(4): 993-1002.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.4.0993        http://www.rsta.ac.cn/CN/Y2022/V37/I4/993

水质参数MinMaxMeanSDCVN
石头口门水库SDD51203823.70.62119
Turbidity0.6570.6341.6540.70.83
TSM3.67225.258.7854.780.84
Chl-a0.4547.5213.8210.660.96
Chl-a/TSM0.012.640.520.591.12
查干湖SDD867552521080.4366
Turbidity0.0315.332.092.121.04
TSM0.0818.584.773.850.81
Chl-a0.4537.528.827.660.87
Chl-a/TSM0.4321.812.913.591.23
南澳洲水体SDD2027596.279.60.8345
Turbidity0.8041.5013.0711.160.85
TSM2.0194.117.5817.420.99
Chl-a6.2775.319.0913.460.70
Chl-a/TSM0.625.511.841.280.69
美国水库SDD241506232.40.5252
Turbidity2.342.09.34.20.45
TSM2.154.518.77.30.39
Chl-a2.8182.562.824.660.39
Chl-a/TSM1.109.373.721.380.39
表1  水质参数信息
图1  实测水面反射率光谱曲线
图2  总悬浮物与各波段反射率和导数的相关性
图3  悬浮物浓度与各波段比值相关性分布图
图4  TSM实测值与反演值对比
数据集波段选择拟合方程RMSERMSE%MAERPDR2
STKMR880/R410y=143.536x-22.04314.124.510.75.30.87
CGHR850/R550y=483.254x-26.36523.620.815.26.20.82
SAR722/R690y=160.975x-69.2424.222.62.96.50.95
CINR720/R500y=28.077x-10.3353.722.82.94.90.78
表2  波段组合与悬浮物相关系数
图5  聚合数据集
图6  RE绝对值与Chl-a和Chl-a与TSM的浓度比的关系
1 Duan Hongtao, Zhang Bai, Song Kaishan, et al. Study on hyperspectral estimation model of transparency of Chagan Lake [J]. Journal of Arid Land Resources and Environment, 2006, 20 (1): 156-160.
1 段洪涛,张柏,宋开山,等. 查干湖透明度高光谱估测模型研究 [J]. 干旱区资源与环境,2006,20(1): 156-160.
2 Zhang Yunlin, Qin Boqiang, Chen Weimin. A study on total suspended matter in lake Taihu[J]. Resources and Environment in the Yangze Basin,2004,13(3):266-271.
2 张运林,秦伯强,陈伟民. 太湖水体中悬浮物研究. 长江流域资源与环境, 2004, 13(3): 266-271..
3 Gao Chen, Xu Jian, Gao Dan, et al. Inversion of total suspended matter concentration in Poyang Lake in high water season based on GF-1 and measured spectral data [J]. Remote Sensing of Land and Resources,2019,31(1):101-109.
3 高晨,徐健,高丹,等. 基于GF-1与实测光谱数据鄱阳湖丰水期总悬浮物浓度反演[J]. 国土资源遥感,2019,31(1):101-109.
4 Shen Ming. Study on remote sensing monitoring model of watershed water environment[D]. Beijing: University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences), 2018.
4 申明. 流域水环境遥感监测模型研究[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2018.
5 Duan Hongtao, Zhang Bai, Liu Dianwei, et al. Relationship between fluorescence peak spectral features and Chlorophyll-ain Lake Chagan [J]. Journal of Infrared Millimeter Waves, 2006, 25(5): 355-359.
5 段洪涛,张柏,刘殿伟,等. 查干湖水体光谱荧光峰特征与叶绿素a响应关系研究[J]. 红外与毫米波学报,2006,25(5): 355-359.
6 Xu Jingping, Zhang Bai, Song Kaishan, et al., Estimation of Chlorophyll-a concentration in lake Xinmiao based on a semi-analytical model [J]. Journal of Infrared Millimeter Waves, 2008, 27(3): 197-201.
6 徐京萍,张柏,宋开山,等. 基于半分析模型的新庙泡叶绿素a浓度反演研究[J]. 红外与毫米波学报,2008, 27(3): 197-201.
7 Ma Ronghua, Dai Jinfang. Estimation of chlorophyll and suspended matter contents in Taihu Lake by combining Landsat ETM and measured spectra [J]. Journal of Lake Sciences, 2005,17(2): 97-103.
7 马荣华,戴锦芳. 结合Landsat ETM与实测光谱估测太湖叶绿素及悬浮物含量[J]. 湖泊科学,2005,17(2): 97-103.
8 Wang Shuhang, Jiang Xia, Wang Wenwen, et al. Temporal and spatial variation of suspended matter in Lihu Lake and its influencing factors [J]. China Environmental Science, 2014,34(6): 1548-1555.
8 王书航,姜霞,王雯雯,等. 蠡湖水体悬浮物的时空变化及其影响因素[J]. 中国环境科学,2014,34(6): 1548-1555.
9 Zhang Yibo, Zhang Yunlin, Zha Yong, et al. Estimation of diffuse attenuation coefficient of photosynthetically active radiation in Xin 'anjiang Reservoir based on Landsat 8 image [J]. Environmental Science, 2015, 36(12): 4420-4429.
9 张毅博,张运林,査勇,等. 基于Landsat 8影像估算新安江水库光合有效辐射漫射衰减系数[J]. 环境科学,2015, 36(12): 4420-4429.
10 Shi Kun, Li Yunmei, Liu Zhonghua, et al. Estimation of total suspend matter concentration in inland lake based on semi-analytical method by remote sensing[J]. Environmental Science,2011,32(6):1571-1580.
10 施坤,李云梅,刘忠华,等. 基于半分析方法的内陆湖泊水体总悬浮物浓度遥感估算研究[J]. 环境科学,2011,32(6):1571-1580.
11 Pan Yingyang, Guo Qiaozhen, Sun Jinhua. Research progress of remote sensing retrieval methods for chlorophyll a concentration in water [J]. Science of Surveying and Mapping, 2017,42(1):43-48.
11 潘应阳,国巧真,孙金华. 水体叶绿素a浓度遥感反演方法研究进展[J]. 测绘科学,2017,42(1):43-48.
12 Xu, J P, Zhang B, Li F, et al..Retrieval of total suspended matters using field spectral data in Shitoukoumen Reservoir, China[J].Chinese Geographical Science,2009,19(1):77-82. DOI:10.1007/ s11769-009-0077-1 .
doi: 10.1007/ s11769-009-0077-1
13 Ma Ronghua, Dai Jinfang. Estimation of chlorophyll and suspended matter contents in Taihu Lake by combining Landsat ETM and measured spectra[J]. Journal of Lake Sciences, 2005,17(2): 97-103.
13 马荣华,戴锦芳. 结合Landsat ETM与实测光谱估测太湖叶绿素及悬浮物含量[J]. 湖泊科学,2005,17(2):97-103.
14 Wang Lei. Inversion model of suspended matter concentration in Meiliang Bay based on measured spectrum [D]. Nanjing:Nanjing Normal University, 2012.
14 王磊. 基于实测光谱的梅梁湾悬浮物浓度反演模型研究[D]. 南京: 南京师范大学, 2012.
15 Li Jianhong, Huang Changchun, Yong Cha,et al.Yangtze river main stream surface waters spatial variation characteristics of suspended solids and the remote sensing inversion[J]. Journal of Environmental Science,2021,42(11):5239-5249.
15 李建鸿,黄昌春,査勇,等.长江干流表层水体悬浮物的空间变化特征及遥感反演[J].环境科学,2021,42(11):5239-5249.
16 Song K S, Li L, Wang Z M, et al. Retrieval of total suspended matter and chlorophyll-a using remote sensing data for drinking water resources[J]. Environ Monit Assess, 2012,184(3):1449-1470. DOI:10.1007/s10661-011-2053-3 .
doi: 10.1007/s10661-011-2053-3
17 Gitelson A A, Dall'Olmo G, Moses W, et al. A simple semianalytical model for remote estimation of Chlorophyll-a in turbid waters: Validation[J]. Remote Sensing Environment, 2008,112:3582-3593.DOI:10.1016/j.rse.2008.04.015 .
doi: 10.1016/j.rse.2008.04.015
18 Yang W, Matsushit B, Chen J, et al. Estimating constituent concentrations in case II waters from MERIS satellite data by semi-analytical model optimizing and look-up tables[J]. Remote Sensing Environment,2011,115:1247-1259. DOI:10.1016/j.rse.2011.01.007 .
doi: 10.1016/j.rse.2011.01.007
19 Gao Weicheng, Li Xiuling, Hu Changwei, et al. Temporal and spatial variation of suspended matter in large reservoirs in Yimeng Mountains [J]. Environmental Science and Technology, 2018,41(S2):80-87.
19 高炜程,李修岭,胡长伟,等. 沂蒙山区大型水库水体悬浮物的时空变化[J]. 环境科学与技术, 2018,41():80-87.
20 Sváb E, Tyler A N, Preston T, et al. Characterizing the spectral reflectance of algae in lake waters with high suspended sediment concentrations[J]. Remote Sensing, 2005,26(5): 919-928. DOI:10.1080/0143116042000274087 .
doi: 10.1080/0143116042000274087
21 Aponasenko A D, Shchur L A, Lopatin V N. Relationship of the chlorophyll content with the biomass and disperse structure of phytoplankton[J]. Doklady Biological Sciences, 2007,412:61-63. DOI:10.1134/S0012496607010206 .
doi: 10.1134/S0012496607010206
22 Li Suju, Wu Qian, Wang Xuejun, et al. Relationship between phytoplankton chlorophyll content and reflectance spectral cha-racteristics in Chaohu Lake [J]. Journal of Lake Sciences, 2002,14(3): 228-234.
22 李素菊,吴倩,王学军,等. 巢湖浮游植物叶绿素含量与反射光谱特征的关系[J].湖泊科学,2002,14(3): 228-234.
23 Xu Jingping, Zhang Bai, Lin Yu, et al. Inversion of suspended matter content and transparency from hyperspectral data in Shoukoumen Reservoir, Jilin Province [J]. Journal of Lake Sciences, 2007,19(3): 269-274.
23 徐京萍,张柏,蔺钰,等. 结合高光谱数据反演吉林石头口门水库悬浮物含量和透明度[J]. 湖泊科学, 2007,19(3): 269-274.
24 Zhao Lina, Wang Yannan, Jin Qi, et al. Classification and inversion of lake suspend concentration based on GOCI image [J]. Acta Ecologica Sinica, 2015,35(16):5528-5536.
24 赵丽娜,王艳楠,金琦,等. 基于GOCI影像的湖泊悬浮物浓度分类反演[J]. 生态学报, 2015,35(16):5528-5536.
25 Doxaran D, Froidefond J M, Lavender S, et al. Spectral signature of highly turbid waters Application with SPOT data to quantify suspended particulate matter concentrations[J]. Remote Sens.Environment,2002, 81: 149-161. DOI:10.1016/S0034-4257(01)00341-8 .
doi: 10.1016/S0034-4257(01)00341-8
26 Song K S, Li L, Wang Z M, et al. Retrieval of total suspended matter and chlorophyll-a using remote sensing data for drinking water resources. Environ[J]. Monit Assess, 2002,184(3): 1449-1470. DOI:10.1007/s10661-011-2053-3 .
doi: 10.1007/s10661-011-2053-3
27 Le Chengfeng, Li Yunmei, Zha Yong, et al. Influence of suspended matter on water ecological environment in Taihu Lake and its hyperspectral inversion[J]. Chinese Journal of Environmental Sciences, 2008,28(10):2148-2155.
27 乐成峰,李云梅,查勇,等. 太湖悬浮物对水体生态环境的影响及其高光谱反演[J]. 环境科学学报, 2008,28(10):2148-2155.
28 Li Yunliang, Zhang Yunlin. Inversion of suspended matter and chlorophyll a concentration in Taihu Lake in summer based on TM image[J].Remote Sensing Information,2008(6):22-27,80.
28 李云亮,张运林. 基于TM影像的太湖夏季悬浮物和叶绿素a浓度反演[J]. 遥感信息,2008(6):22-27,80.
29 Miehle P, Livesley S J, Liw C, et al. Quantifying uncertainty from large-scale model predictions of forest carbon dynamics. Global Change Biol, 2006,12:1421-1434. DOI:10.1111/j.1365-2486.2006.01176.x .
doi: 10.1111/j.1365-2486.2006.01176.x
30 Pulliainen J, Kallio K, Eloheimo K, et al. A Semioperative approach to lake water quality retrieval from remote sensing data[J]. The Science of the Total Environment, 2001, 268: 79-93. DOI:10.1016/S0048-9697(00)00687-2 .
doi: 10.1016/S0048-9697(00)00687-2
31 Cao Yin, Ye Yuntao, Zhao Hongli, et al. Analysis of the relationship between the measured hyperspectral data and suspended matter concentration and turbidity in Nansi Lake[J]. Hydropower and Energy Science, 2016, 34(1): 40-44.
31 曹引,冶运涛,赵红莉,等. 南四湖水体实测高光谱与悬浮物浓度及浊度关系分析[J]. 水电能源科学,2016, 34(1): 40-44.
32 Sun Deyong, Li Yunmei, Wang Qiao,et al.Remote sensing es-timation of suspend matter concentration in Taihu Lake based on measurements of hyperspectral data[J]. Journal of Infrared and Milmillimeter Waves, 2009,28(2):124-128.
32 孙德勇,李云梅,王桥,等. 基于实测高光谱的太湖水体悬浮物浓度遥感估算研究[J]. 红外与毫米波学报,2009,28(2): 124-128.
33 Paerl H, Paul V J. Climate change: Links to global expansion of harmful cyanobacteria[J]. Water Research,2012,46:1349-1363. DOI:10.1016/j.watres.2011.08.002 .
doi: 10.1016/j.watres.2011.08.002
34 Doron M, Bélanger S, Doxaran D, et al. Spectral variations in the near-infrared ocean reflectance[J]. Remote Sensing Environment,2011,115,1617-1631.DOI:10.1016/j.rse. 2011. 01.015 .
doi: 10.1016/j.rse. 2011. 01.015
35 Cao Yin, Ye Yuntao, Zhao Hongli, et al. Inland water quality parameters set modeling method based on remote sensing inversion[J]. Chinese Journal of Environmental Sciences, 2017,37(10): 3940-3951.
35 曹引,冶运涛,赵红莉,等. 内陆水体水质参数遥感反演集合建模方法[J]. 中国环境科学, 2017,37(10): 3940-3951.
36 Yang Ting, Zhang Hui, Wang Qiao, et al. Partitioning of suspended matter concentration and transparency in Taihu Lake based on measured hyperspectral data[J]. Journal of Ecology and Rural Environment, 2011,27(4):21-26.
36 杨婷,张慧,王桥,等. 基于实测高光谱数据的太湖悬浮物浓度与透明度分区[J]. 生态与农村环境学报,2011,27(4):21-26.
[1] 王永琳,迟永刚,周蕾. 2007~2018年中国陆地植被总初级生产力与日光诱导叶绿素荧光的时空格局及其气候调控[J]. 遥感技术与应用, 2022, 37(3): 692-701.
[2] 严致荣,刘良云,竞霞. 中国区域2007~2018植被荧光时空变化与气候响应模式研究[J]. 遥感技术与应用, 2022, 37(3): 702-712.
[3] 杨凤珠,王震山,张乾,孙善磊,柳艺博. 多源日光诱导叶绿素荧光产品在中国地区的一致性研究[J]. 遥感技术与应用, 2022, 37(1): 125-136.
[4] 沈洁,辛晓平,张景,苗晨,王旭,丁蕾,沈贝贝. 基于Cubist的中国植被区域叶绿素荧光数据重建[J]. 遥感技术与应用, 2022, 37(1): 244-252.
[5] 孙忠秋,高显连,杜珊珊,刘新杰. 全球日光诱导叶绿素荧光卫星遥感产品研究进展与展望[J]. 遥感技术与应用, 2021, 36(5): 1044-1056.
[6] 王思远,李强子,王红岩,张源,杜鑫,高亮. 基于TROPOMI叶绿素荧光遥感的冬小麦旱情监测[J]. 遥感技术与应用, 2021, 36(5): 1057-1071.
[7] 罗婕纯一,秦龙君,毛鹏,熊育久,赵文利,高辉辉,邱国玉. 水质遥感监测的关键要素叶绿素a的反演算法研究进展[J]. 遥感技术与应用, 2021, 36(3): 473-488.
[8] 金航,竞霞,高媛,刘良云. 遥感探测小麦条锈病严重度的GBRT模型研究[J]. 遥感技术与应用, 2021, 36(2): 411-419.
[9] 熊育久,冯房观,方奕舟,邱国玉,赵少华,姚云军. 蒸散发遥感反演产品应用关键问题浅议[J]. 遥感技术与应用, 2021, 36(1): 121-131.
[10] 郭利彪,刘桂香,运向军,张勇,孙世贤. 基于数据机理的植被叶面积指数遥感反演研究[J]. 遥感技术与应用, 2020, 35(5): 1047-1056.
[11] 王雅楠,韦瑾,汤旭光,韩旭军,马明国. 应用叶绿素荧光估算植被总初级生产力研究进展[J]. 遥感技术与应用, 2020, 35(5): 975-989.
[12] 边玲玲,王卷乐,郭兵,程凯,魏海硕. 基于特征空间的黄河三角洲垦利县土壤盐分遥感提取[J]. 遥感技术与应用, 2020, 35(1): 211-218.
[13] 徐卫星,薛华柱,靳华安,李爱农. 融合遥感先验信息的叶面积指数反演[J]. 遥感技术与应用, 2019, 34(6): 1235-1244.
[14] 王思恒, 黄长平, 张立福, 高显连, 付安民. 陆地生态系统碳监测卫星远红波段叶绿素荧光反演算法设计[J]. 遥感技术与应用, 2019, 34(3): 476-487.
[15] 陈思媛, 竞霞, 董莹莹, 刘良云. 基于日光诱导叶绿素荧光与反射率光谱的小麦条锈病探测研究[J]. 遥感技术与应用, 2019, 34(3): 511-520.