Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (6): 1302-1310    DOI: 10.11873/j.issn.1004-0323.2022.6.1302
冰雪遥感专栏     
中天山穆什科托夫冰川跃动特征及控制机理分析
王振峰1,2(),蒋宗立2(),刘时银3,祝传广2,吴坤鹏3,张震4,龙四春2
1.湖南科技大学 测绘遥感信息工程湖南省重点实验室,湖南 湘潭 411201
2.湖南科技大学 地球科学与空间信息工程学院,湖南 湘潭 411201
3.云南大学 国际河流与生态安全研究院,云南 昆明 650500
4.安徽理工大学 空间信息与测绘工程学院,安徽 淮南 232001
Characteristics and Control Mechanism of Mushketov Glacier Surging, Central Tianshan
Zhenfeng Wang1,2(),Zongli Jiang2(),Shiyin Liu3,Chuanguang Zhu2,Kunpeng Wu3,Zhen Zhang4,Sichun Long2
1.Hunan Provincial Key Laboratory of Geo-Information Engineering in Surveying,Mapping and Remote Sensing,Hunan University of Science and Technology,Xiangtan 411201,China
2.School of Earth Sciences and Spatial Information Engineering,Hunan University of Science and Technology,Xiangtan 411201,China
3.Institute of International Rivers and Eco-Security,Yunnan University,Kunming 650500,China
4.School of Geomatics,Anhui University of Science and Technology,Huainan 232001,China
 全文: PDF(5826 KB)   HTML
摘要:

天山地区孕育着大量的跃动型冰川,目前该地区冰川跃动过程及跃动控制机制尚不明确。利用Landsat、Sentinel-1A、TerraSAR-X/TanDEM-X等多源遥感数据获得了中天山穆什科托夫冰川跃动前后的表面特征、流速和高程变化。结果表明:①该冰川主干表面流速从2017年夏末开始增加,在冬季流速达到最大峰值,约为4.4 m d-1,2018年夏末急剧减小;②2000—2012年冰川积蓄区平均增厚9.23±4.62 m,跃动前锋形成,而冰舌部分是以减薄为主;2012—2014年冰舌部分持续减薄,中上游仍以积累为主,增厚约1.23±0.91 m;2014—2018年冰川积蓄区出现明显减薄,最大减薄42.6±1.82 m,接收区高程显著增加,最高隆起75.6±1.82 m。根据冰川表面流速及高程变化特征,确认2017—2018年为该冰川跃动活跃期;结合冰川流动定律,认为穆什科托夫冰川跃动主要受冰下水文控制。根据现有的资料及数据,推断该冰川跃动间隔约为60 a。

关键词: 冰川跃动中天山冰川流速高程变化    
Abstract:

The Tian Shan region hosts a large number of surge-type glacier, Detailed surge process and control mechanism analysis are still unclear for surge glaciers in Tian Shan. In this paper, the surface velocity and digital elevation models of the Mushketov Glacier in the central Tian Shan are obtained by feature-tracking of Sentinel-1A SAR data and differential Interferometry of TerraSAR-X/TanDEM-X, respectively. Geodetic method was employed to calculate the glacier surface elevation change. The results show that the surface velocity of the main stream of the glacier has increased significantly since the end of summer in 2017, reached its peak in winter, up to 4.4 m d-1 and decreased sharply at the end of summer in 2018. The middle and upper reaches of glacier from 2000 to 2012 are accumulated, with an average thickening of 9.23±4.62 m, and the ice tongue thinned dramatically; From 2012 to 2014, the ice tongue continued to thin, the average thickness of reservoir area increased by 1.23 ± 0.91 m; From 2014 to 2018, the glacier reservoir area was significantly thinned, with the maximum decrease of 42.6 ± 1.82 m, the elevation of the receiving area increased significantly, and the highest uplift was 75.6 ± 1.82 m. According to the change of elevation and the characteristics of flow velocity and analysis of glacier surge mechanism using glacier flow law, we concluded that the Mushkotov Glacier surged from 2017 to 2018, and the surge is mainly controlled by hydrological conditions. Combined with the available history data, it is inferred that the glacial surge interval is about 60 years.

Key words: Glacier surge    Central Tianshan    Surface velocity    Surface elevation change
收稿日期: 2021-10-21 出版日期: 2023-02-15
ZTFLH:  TP79  
基金资助: 国家自然科学基金项目(42071085);湖南省自然科学基金项目(2019JJ50190)
通讯作者: 蒋宗立     E-mail: 1783792308@qq.com;jiangzongli@hnust.edu.cn
作者简介: 王振峰(1999-),男,河南滑县人,硕士研究生,主要从事冰川跃动遥感监测研究。E?mail:1783792308@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王振峰
蒋宗立
刘时银
祝传广
吴坤鹏
张震
龙四春

引用本文:

王振峰,蒋宗立,刘时银,祝传广,吴坤鹏,张震,龙四春. 中天山穆什科托夫冰川跃动特征及控制机理分析[J]. 遥感技术与应用, 2022, 37(6): 1302-1310.

Zhenfeng Wang,Zongli Jiang,Shiyin Liu,Chuanguang Zhu,Kunpeng Wu,Zhen Zhang,Sichun Long. Characteristics and Control Mechanism of Mushketov Glacier Surging, Central Tianshan. Remote Sensing Technology and Application, 2022, 37(6): 1302-1310.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.6.1302        http://www.rsta.ac.cn/CN/Y2022/V37/I6/1302

图1  研究区位置及遥感数据分布
数据日期分辨率/m用途
Landsat/OLI

2015/08/14、2016/09/01

2017/07/02、2017/09/20

2018/07/31、2019/08/25

30冰川表面变化分析
Sentinel-1A2015/12/09—2020/01/065×20冰川流速和流向监测
TSX/TDX

2012/02/10、2014/03/03

2018/09/24

1.4×2.2冰川高程变化监测
SRTM2000-0230
AWD302009—201130辅助生成DEM
ICESat-22019/03/19、2019/03/21-DEM精度评估
表1  使用的数据
图2  非冰川区流速分布
图3  非冰川区高程变化
图4  冰川沿主流线流速变化
图5  横剖面(TT',PP')表面流速变化(横剖面位置见图1)
图6  穆什科托夫冰川表面高程变化
图7  穆什科托夫冰川分支末端变化
图8  穆什科托夫冰川跃动区段流向
图9  沿主流线冰川厚度分布及变化
1 Sevestre H, Benn D I, Climatic and geometric controls on the global distribution of surge-type glaciers: Implications for a unifying model of surging[J]. Jounal of Glaciology, 2015, 61(228): 646-662. DOI: 10.3189/2015JOG14J136 .
doi: 10.3189/2015JOG14J136
2 Yan J, Lv M, Ruan Z, et al. Evolution of Surge-Type Glaciers in the Yangtze River Headwater using multi-source remote sensing data[J]. Remote Sensing, 2019, 11(24): 2991. DOI: 10.3390/rs11242991 .
doi: 10.3390/rs11242991
3 Li Deji, You Yong. Bursting of the Midui Moraine Lake in Bomi,Xizang[J]. Journal of Mountain Science,1992(4):219-224.
3 李德基,游勇.西藏波密米堆冰湖溃决浅议[J].山地研究,1992(4):219-224.
4 Kotlyakov V M, Rototaeva O V, Nosenko G A. The september 2002 kolka glacier catastrophe in North Ossetia, Russian federation:Evidence and analysis[J]. Mountain Research and Development,2004,24:78-83. DOI:10.1659/0276-4741(2004)024 [0078:TSKGCI]2.0.CO;2.
doi: 10.1659/0276-4741(2004)024
5 Zhang Zhen, Liu Shiyin, Wei Junfeng, et al. Monitoring recent surging of the Karayaylak Glacier in Pamir by remote sensing[J].Journal of Glaciology and Geocryology,2016,38(1):11-20.
5 张震, 刘时银,魏俊锋,等. 新疆帕米尔跃动冰川遥感监测研究[J]. 冰川冻土,2016,38(1):11-20.
6 Kääb A, Leinss S, Gilbert A, et al. Massive collapse of two glaciers in Western Tibet in 2016 after surge-like instability[J]. Nature Geoscience, 2018, 11(2): 114-120. DOI:10.1038/s41561-017-0039-7 .
doi: 10.1038/s41561-017-0039-7
7 Bhambri R, Watson C S, Hewitt K, et al. The hazardous 2017-2019 surge and river damming by Shispare Glacier, Karakoram[J]. Scientific Reports,2020,10(4685). DOI:10. 1038/s41598-020-61277-8 .
doi: 10. 1038/s41598-020-61277-8
8 Wendt A, Mayer C, Lambrecht A,et al.A glacier surge of Biva-chny glacier,Pamir mountains,observed by a time series of hi-ghresolution digital elevation models and glacier velocities[J].Remote Sensing,2017,9040388.DOI:10.3390/rs9040388 .
doi: 10.3390/rs9040388
9 Meier M F, Post A. What are glacier surges?[J]. Canadian Journal of Remote Sensing,1969,6(4):807-817. DOI:10.1139/ e69-081 .
doi: 10.1139/ e69-081
10 Jiskoot H, Murray T, Boyle P. Controls on the distribution of surge-type glaciers in Svalbard[J].Journal of Glaciology,2000,46(154):412-422. DOI:10.3189/172756500781833115 .
doi: 10.3189/172756500781833115
11 Pieczonka T, Bolch T. Region-wide glacier mass budgets and area changes for the Central Tien Shan between 1975 and 1999 using Hexagon KH-9 imagery[J]. Global & Planetary Change,2015,128:1-13. DOI:10.1016/j.gloplacha.2014. 11.014 .
doi: 10.1016/j.gloplacha.2014. 11.014
12 Kotlyakov V M, Chernova L P, Khromova T Y, et al. Glacier surges and glacial disasters[J]. Doklady Earth Sciences, 2017, 472(1): 57-61. DOI: 10.1134/S1028334X17010056 .
doi: 10.1134/S1028334X17010056
13 Quincey D J, Glasser N F, Cook S J, et al. Heterogeneity in Karakoram glacier surges[J].Journal of Geophysical Research:Earth Surface,2015,120(7):1288-1300. DOI:10.1002/2015JF003515 .
doi: 10.1002/2015JF003515
14 Barrand N E, Murray T. Multivariate controls on the incidence of glacier surging in the Karakoram Himalaya[J]. Arctic Antarctic & Alpine Research, 2006, 38(4): 489-498. DOI: 10.1657/1523-0430(2006)38 [489:MCOTIO]2.0.CO;2.
doi: 10.1657/1523-0430(2006)38
15 Zhou S, Yao X, Zhang D, et al. Remote sensing monitoring of advancing and surging glaciers in the Tien Shan, 1990–2019[J].Remote Sensing,2021,13(10):1973.DOI: 10.3390/rs13101973 .
doi: 10.3390/rs13101973
16 Haeusler H, Ng F, Kopecny A, et al. Remote-sensing-based analysis of the 1996 surge of Northern Inylchek Glacier, central Tien Shan, Kyrgyzstan[J]. Geomorphology, 2016, 273:292-307. DOI: 10.1016/j.geomorph.2016.08.021 .
doi: 10.1016/j.geomorph.2016.08.021
17 Zhu Q, Ke C, Li H. Monitoring glacier surges in the Kongur Tagh area of the Tibetan Plateau using Sentinel-1 SAR data[J]. Geomorphology,2021,390:107869. DOI: 10.1016/j.geomorph.2021.107869 .
doi: 10.1016/j.geomorph.2021.107869
18 Zhang M, Chen F, Tian B, et al. Characterization of kyagar glacier and lake outburst floods in 2018 based on time-series sentinel-1A data[J]. Water,2020,12(1):184. DOI: 10.3390/w12010184 .
doi: 10.3390/w12010184
19 Kamb B, Raymond C F, Harrison W D, et al. Glacier surge mechanism: 1982-1983 surge of variegated Glacier, Alaska[J]. Science, 1985, 227(4686): 469-479. DOI: 10.1126/science.227.4686.469 .
doi: 10.1126/science.227.4686.469
20 Murray T, Strozzi T, Luckman A, et al. Is there a single surge mechanism? Contrasts in dynamics between glacier surges in Svalbard and other regions[J]. Jounal of Geophysical Research,2003,108(B5):2237.DOI:10.1029/2002JB001906 .
doi: 10.1029/2002JB001906
21 Benn D I, Fowler A C, Hewitt I, et al. A general theory of glacier surges[J]. Journal of Glaciology, 2019, 65(253): 701-716. DOI: 10.1017/jog.2019.62 .
doi: 10.1017/jog.2019.62
22 Strozzi T, Luckman A, Murray T,et al. Glacier motion estimation using SAR offset-tracking procedures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2384-2391. DOI: 10.1109/TGRS.2002.805079 .
doi: 10.1109/TGRS.2002.805079
23 Strozzi T, Kouraev A, Wiesmann A, et al. Estimation of Arctic glacier motion with satellite L-band SAR data[J]. Remote Sensing of Environment, 2008, 112(3): 636-645. DOI: 10.1016/j.rse.2007.06.007 .
doi: 10.1016/j.rse.2007.06.007
24 Bolch T, Pieczonka T, Benn D I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery[J]. Cryosphere, 2011, 5(2): 349-358. DOI: 10.5194/tc-5-349-201 .
doi: 10.5194/tc-5-349-201
25 Pritchard H, Murray T, Strozzi T, et al. Surge-related topographic change of the glacier Sortebrae, East Greenland, derived from synthetic aperture radar interferometry[J]. Journal of Glaciology, 2003, 49(166): 381-390. DOI: 10.3189/172756503781830593 .
doi: 10.3189/172756503781830593
26 Li Z, Li J, Ding X, et al. Anomalous glacier changes in the Southeast of Tuomuer‐Khan Tengri Mountain Ranges, Central Tianshan[J]. Journal of Geophysical Research Atmospheres, 2018, 123: 6840-6863. DOI:10.1029/2017JD028150 .
doi: 10.1029/2017JD028150
27 Gardelle J, Berthier E, Arnaud Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011[J]. The Cryosphere,2013,7(4):1263-1286. DOI: 10.5194/tc-7-1263-2013 .
doi: 10.5194/tc-7-1263-2013
28 Dehecq A, Gourmelen N, Gardner A S, et al. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia[J].Nature Geoence,2019,12:22-27. DOI:10.1038/S41561-018-0271-9 .
doi: 10.1038/S41561-018-0271-9
29 Cuffey K M, Paterson W, The physics of glaciers (4th Ed.) [M]. USA: Academic Press, 2010.
30 Jiang Z, Wu K, Liu S, et al. Surging dynamics of South Rimo Glacier,Eastern Karakoram[J].Environmental Research Letters,2021,16:114044. DOI: 10.1088/1748-9326/ac3175 .
doi: 10.1088/1748-9326/ac3175
31 Farinotti D, Huss M, Fürst J, et al. A consensus estimate for the ice thickness distribution of all glaciers on earth[J]. Nature Geoscience, 2019,12:168-173. DOI: 0.1038/s41561-019-0300-3 .
doi: 0.1038/s41561-019-0300-3
32 Dunse T, Schellenberger T, Hagen J O, et al. Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt[J]. The Cryosphere, 2015, 9(1): 197-215. DOI: 10.5194/tc-9-197-2015 .
doi: 10.5194/tc-9-197-2015
33 Round V, Leinss S, Huss M, et al. Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram[J]. The Cryosphere, 2017, 11(2): 723-739. DOI: 10.5194/tc-11-723-2017 .
doi: 10.5194/tc-11-723-2017
34 Paul F, Strozzi T, Schellenberger T, et al. The 2015 surge of hispar glacier in the Karakoram[J]. Remote Sensing, 2017, 9(9): 888. DOI: 10.3390/rs9090888 .
doi: 10.3390/rs9090888
35 Xie Zichu, Liu Chaohai. Introduction to glaciology[M]. Shanghai: Shanghai Popular Science Press,2010:270-283.
35 谢自楚,刘潮海.冰川学导论[M]. 上海:上海科学普及出版社,2010:270-283.
[1] 王仕哲, 柯长青. 基于ALOSPALSAR的喜马拉雅山冰川流速分布及变化[J]. 遥感技术与应用, 2018, 33(5): 942-955.