Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (6): 1319-1327    DOI: 10.11873/j.issn.1004-0323.2022.6.1319
冰雪遥感专栏     
中天山南依内里切克冰川轴部二维流速及运动机制
张亚丽1,2,3(),张立峰1,2,3(),何毅1,2,3,杨旺1,2,3,曹胜鹏1,2,3
1.兰州交通大学 测绘与地理信息学院,甘肃 兰州 730070
2.地理国情监测技术应用国家地方联合工程研究中心,甘肃 兰州 730070
3.甘肃省地理国情监测工程实验室,甘肃 兰州 730070
Axial Two-dimensional Velocity and Motion Mechanism of the South Inylchek Glacier in Central Tianshan Mountains
Yali Zhang1,2,3(),Lifeng Zhang1,2,3(),Yi He1,2,3,Wang Yang1,2,3,Shengpeng Cao1,2,3
1.Faculty of Geomatics,Lanzhou Jiaotong University,Lanzhou 730000,China
2.National?Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring,Lanzhou 730000,China
2.Gansu Provincial Engineering Laboratory for National Geographic State Monitoring,Lanzhou 730000,China
 全文: PDF(5597 KB)   HTML
摘要:

冰川运动一定程度上会引发泥石流、滑坡等地质灾害,因此掌握冰川运动过程至关重要。冰川流速揭示冰川运动过程,而已有冰川流速构建方法未考虑冰川流动方向,揭示的冰川运动机制不够精准。选取中天山南依内里切克冰川为对象,基于2018—2020年Sentinel-1A升轨数据,利用像素偏移追踪(Pixel Offset Tracking,POT)技术获得南依内里切克冰川方位向与距离向位移场,引入冰川流动方向构建冰川主流线轴部二维流速,分析冰川运动机制。结果表明:稳定区像元偏移速度远小于冰川主流线轴部二维流速,利用POT技术构建的轴部二维流速模型监测冰川运动过程良好。2018、2019和2020年中天山南依内里切克冰川轴部二维平均流速分别为62.28 cm/d、49.41 cm/d、61.89 cm/d,消融区(冰舌)轴部二维流速随高程的降低呈先缓慢减小后逐渐增大再迅速减小趋势,冰川流速由轴部向两侧边缘递减。随着气温升高,冰川运动速度逐渐增大,气温升高可能是中天山南依内里切克冰川流速加快的主要原因。

关键词: 南依内里切克冰川运动速度Sentinel-1APOT    
Abstract:

Glacier movement can cause debris flow, landslide and other geological disasters to a certain extent, so it is very important to master process of glacier movement. Glacier velocity reveals the process of glacier movement, but some existing methods of constructing glacier velocity do not consider direction of glacier flow, and mechanism of glacier movement revealed is not precise enough. Based on Sentinel-1A ascending orbit data from 2018 to 2020, this paper uses Pixel Offset Tracking (POT) technology to obtain azimuth and range displacement fields of the South Inylchek Glacier in Central Tianshan Mountains, introduces the glacier flow direction to construct the axial two-dimensional velocity of glacial mainstream line, and analyzes the mechanism of glacier movement. The results show that pixel migration velocity in stable region is far less than the axial two-dimensional velocity of glacier mainstream line. The axial two-dimensional velocity model constructed by POT technology is good for monitoring the glacier movement process. In 2018, 2019 and 2020, the axial two-dimensional average velocities of the South Inylchek Glacier in Central Tianshan Mountains are 62.28 cm/d, 49.41 cm/d and 61.89 cm/d, respectively. The axial two-dimensional velocity of ablation area (ice tongue) decreases slowly at first, then increases gradually, and last decreases rapidly with the decrease of elevation, and the glacier velocity decreases from axis to edge of both sides. With the increase of temperature, the speed of glacier movement increases gradually. The increase of temperature may be the main reason for the acceleration of glacier velocity.

Key words: South Inylchek Glacier    Movement speed    Sentinel-1A    POT
收稿日期: 2021-07-12 出版日期: 2023-02-15
ZTFLH:  P343.6  
基金资助: 中国博士后科学基金面上基金项目(2019M660092XB);甘肃省科技计划项目(20JR2RA002);甘肃省教育厅项目(2019A-043);甘肃省自然科学基金项目(20JR10RA249);甘肃省青年科学基金项目(20JR10RA272);兰州交通大学-天津大学创新项目基金项目(2020055);兰州交通大学优秀平台(201806)
通讯作者: 张立峰     E-mail: 493497605@qq.com;119273207@qq.com
作者简介: 张亚丽(1998-),女,甘肃天水人,硕士研究生,主要从事冰川变化研究。E?mail:493497605@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张亚丽
张立峰
何毅
杨旺
曹胜鹏

引用本文:

张亚丽,张立峰,何毅,杨旺,曹胜鹏. 中天山南依内里切克冰川轴部二维流速及运动机制[J]. 遥感技术与应用, 2022, 37(6): 1319-1327.

Yali Zhang,Lifeng Zhang,Yi He,Wang Yang,Shengpeng Cao. Axial Two-dimensional Velocity and Motion Mechanism of the South Inylchek Glacier in Central Tianshan Mountains. Remote Sensing Technology and Application, 2022, 37(6): 1319-1327.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.6.1319        http://www.rsta.ac.cn/CN/Y2022/V37/I6/1319

图1  南依内里切克冰川地理位置与地形特征
时段主影像从影像时间基线/d空间基线/m
12018-02-092018-11-24288115.12
22019-02-042019-11-19288-234.89
32020-02-112020-11-2528863.93
表1  Sentinel-1A 数据对参数
图2  南依内里切克冰川轴部二维流速解算示意图(底图为哨兵2号band4)红色箭头为冰川运动方向
图3  2018—2020年日均方位向和距离向流速注:(a)、(b)和(c)是日均距离向流速,(d)、(e) 和(f)是日均方位向流速,正值代表向西运动
图4  南依内里切克冰川沿AC剖面线流速
图5  2018—2020年剖面线流速
图6  像元偏移速度频数分布直方图
图7  2018—2020年阿瓦提气温降水量
1 Bolch T. Climate change and glacier retreat in Northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data[J]. Global and Planetary Change, 2007, 56(1/2):1-12.
2 Richardson S D, Reynolds J M. An overview of flacial hazards in the Himalayas[J]. Quaternary International, 2000, 65(99):31-47.
3 Tong Liqiang, Tu Jienan, Pei Lixin, et al. Preliminary discussion of the frequently debris flow events in Sedongpu Basin at Gyalaperi Peak, Yarlung Zangbo River[J]. Journal of Engineering Geology,2018,26(6):1552-1561.
3 童立强, 涂杰楠, 裴丽鑫, 等. 雅鲁藏布江加拉白垒峰色东普流域频繁发生碎屑流事件初步探讨[J]. 工程地质学报, 2018,26(6):1552-1561.
4 Wang Min. Extraction of glacier motion field in Kangchenjunga Area based on GF-3 SAR images[D]. Chengdu: Southwest Jiaotong University, 2020.
4 王敏. 基于GF-3 SAR影像提取干城章嘉峰地区冰川运动场[D]. 成都:西南交通大学, 2020.
5 Cao Bo, Wang Jie, Zhang Chen, et al. The remote sensing in research of modern glacier changes[J]. Remote Sensing Technology and Application, 2011,26(1):52-59.
5 曹泊, 王杰, 张忱, 等. 遥感技术在现代冰川变化研究中的应用[J]. 遥感技术与应用, 2011, 26(1):52-59.
6 Erten E, Reigber A, Hellwich O, et al. Glacier velocity monitoring by maximum likelihood texture tracking[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2):394-405.
7 Trouve, E, Fallourd, et al. Monitoring temperate glacier displacement by multi-temporal TerraSAR-X images and continuous GPS measurements[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(2):372-386.
8 Luckman A, Quincey D, Bevan S. The potential of satellite radar interferometry and feature tracking for monitoring flow rates of himalayan glaciers[J]. Remote Sensing of Environment, 2007, 111(2-3):172-181.
9 Zhang Xiaobo, Zhao Xuesheng, Ge Daqing, et al. Motion characteristics of the South Inilchek Glacier Derived from new C-Band SAR satellite[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3):429-435.
9 张晓博, 赵学胜, 葛大庆, 等. 利用新型 C 波段雷达卫星研究南伊内里切克冰川运动特征[J]. 武汉大学学报·信息科学版, 2019, 44(3):429-435.
10 Liu Guoxiang, Zhang Bo, Zhang Rui, et al. Monitoring dynamics of Hailuogou Glacier and the secondary landslide Disasters based on combination of Satellite SAR and ground-based SAR[J]. Geomatics and Information Science of Wuhan University,2019,44(7):980-995.
10 刘国祥,张波,张瑞,等.联合卫星SAR和地基SAR的海螺沟冰川动态变化及次生滑坡灾害监测[J]. 武汉大学学报·信息科学版,2019,44(7):980-995.
11 Tazio S, Frank P, Andreas W, et al. Circum-arctic changes in the flow of glaciers and ice caps from Satellite SAR data between the 1990s and 2017[J]. Remote Sensing, 2017, 9(9):947. DOI:10.3390/rs9090947 .
doi: 10.3390/rs9090947
12 Strozzi T, Luckman A, Murray T,et al. Glacier motion estimation using SAR offset-tracking procedures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2384-2391.
13 Zhang Shengpeng, Zhou Zhongzheng, Zhao Lijiang, et al. Extraction of Gangnalou Glacier velocity based on SAR migration tracking method[J]. Bulletin of Surveying and Mapping, 2020, 524(11):36-41.
13 张生鹏, 周中正, 赵利江, 等. 基于SAR偏移量跟踪法提取岗纳楼冰川流速[J]. 测绘通报, 2020, 524(11):36-41.
14 Li Jia, Li Zhiwei, Wang Changcheng, et al. Using SAR of offset-tracking approach to surface motion of the South Inylchek Glacier in Tianshan[J]. Chinese Journal of Geophysics, 2013,56(4):1226-1236.
14 李佳, 李志伟, 汪长城, 等. SAR偏移量跟踪技术估计天山南依内里切克冰川运动[J]. 地球物理学报, 2013,56(4):1226-1236.
15 Li J, Li Z W, Ding X L, et al. Investigating mountain glacier motion with the method of SAR intensity-tracking: Removal of topographic effects and analysis of the dynamic patterns[J]. Earth-Science Reviews, 2014, 138:179-195.
16 Hagg W, Mayer C, Helm L A. Sub-debris melt rates on Southern Inylchek Glacier, Central Tian Shan[J]. Geografiska Annaler, 2008, 90(1):55-63.
17 Julia N, Mahdi M, Hans-Ulrich W. Estimating spatial and temporal variability in surface kinematics of the Inylchek Glacier, Central Asia, using TerraSAR-X data[J]. Remote Sensing, 2014, 6(10):9239-9259.
18 Li Yi, Yan Shiyong, Li Zhiguo, et al. The flow state of South Inylchek Glacier in the Tianshan Mountains in 2016: Extraction and analysis based on Landsat-8 OLI Image[J]. Journal of Glaciology and Geocryology,2017,39(6):1281-128.
18 李毅, 闫世勇, 李治国, 等. 基于Landsat-8 OLI影像的天山南伊内里切克冰川2016年冰川表面运动状态提取与分析[J]. 冰川冻土, 2017,39(6):1281-1288.
19 Aizen Vladimir B. Association between atmospheric circulation patterns and firn-ice core records from the Inylchek Glacierized Area, Central Tien Shan, Asia[J]. Journal of Geophysical Research Atmospheres,2004,109:D08304. DOI:10.1029/2003JD003894 .
doi: 10.1029/2003JD003894
20 Li Shirao. PO-SBAS model based on baseline combination optimization for extracting Bugyai Kangri glacier motion field[D]. Chongqing: Southwest Jiaotong University, 2020.
20 李诗娆. 基于基线组合优化的PO-SBAS模型提取布加岗日冰川运动场[D].重庆: 西南交通大学, 2020.
21 Ruan Zhixing. Study on feature and spatial information extraction method of mountain glacier movement based on SAR image[D]. Beijing:University of Chinese Academy of Sciences.
21 阮智星. 基于SAR图像的山地冰川运动特征与空间信息提取方法研究[D]. 北京:中国科学院大学.
22 Wang Shizhe, Ke Changqing. Distribution and variation of glacier velocity in Himalayas based on ALOS PALSAR[J]. Remote Sensing Technology and Application, 2018,33(5):170-183.
22 王仕哲, 柯长青. 基于ALOSPALSAR的喜马拉雅山冰川流速分布及变化[J]. 遥感技术与应用, 2018,33(5):170-183.
23 Zhang Qimin, Zheng Yitong, Zhang Lu, et al. South Inylchek surface motion extraction and analysis based on time-series pixel tracking algorithm[J]. Remote Sensing Technology and Application,2020,35(6):1273-1282.
23 张齐民,郑一桐,张露, 等. 基于时序像素跟踪算法的南伊内里切克冰川运动提取与特征分析[J]. 遥感技术与应用,2020,35(6):1273-1282.
24 Wang Lei, Jiang Zongli, Liu Shiyin, et al. Characteristic of glaciers’ movement Along Karakoram Highway[J]. Remote Sensing Technology and Application, 2019,34(2):412-423.
24 王磊, 蒋宗立, 刘时银, 等. 中巴公路沿线冰川运动特征[J]. 遥感技术与应用, 2019,34(2):412-423.
25 Zhou J, Zhen L, Guo W. Estimation and analysis of the surface velocity field of mountain glaciers in Muztag Ata using satellite SAR data[J]. Environmental Earth Sciences, 2014, 71(8):3581-3592.
[1] 李宏达,高小红,汤敏. 基于CNN的不同空间分辨率影像土地覆被分类研究[J]. 遥感技术与应用, 2020, 35(4): 749-758.
[2] 魏聪敏,葛伟鹏,邵延秀,吴东霖. 利用Sentinel-1A合成孔径雷达干涉时间序列监测陇东地区地面沉降变形[J]. 遥感技术与应用, 2020, 35(4): 864-872.
[3] 麻源源,左小清,麻卫峰. 基于PS-InSAR的天津地区沉降监测及分析[J]. 遥感技术与应用, 2019, 34(6): 1324-1331.
[4] 李丹, 杨斌, 陈财. 基于Sentinel-1A数据反演九寨沟地震地表形变场[J]. 遥感技术与应用, 2018, 33(6): 1141-1148.
[5] 郭欣,赵银娣. 基于Sentinel-1A SAR的湖南省宁乡市洪水监测[J]. 遥感技术与应用, 2018, 33(4): 646-656.
[6] 胡瑞,肖鹏峰,冯学智,张学良. 玛纳斯河流域积雪区GF-1卫星图像辐射质量比较[J]. 遥感技术与应用, 2018, 33(1): 47-54.
[7] 王嘉芃,刘婷,俞志强,胡潭高,张登荣,寻丹丹,王冬海. 基于COSMOGSkyMed和SPOTG5的城镇洪水淹没信息快速提取研究[J]. 遥感技术与应用, 2016, 31(3): 564-571.
[8] 李梦云,黄方. 基于SPOT-VGT可见光/短波红外波段数据对AMSR-E土壤湿度的降尺度研究[J]. 遥感技术与应用, 2016, 31(2): 342-348.
[9] 胡荣明,魏 曼,杨成斌,贺俊斌. 以SPOT5遥感数据为例比较基于像素与面向对象的分类方法[J]. 遥感技术与应用, 2012, 27(3): 366-371.
[10] 杨永民,田 静,荣 媛,龙爱华. 基于遥感的黑河流域植被物候空间格局提取分析[J]. 遥感技术与应用, 2012, 27(2): 282-288.
[11] 陈燕丽,莫伟华,莫建飞,王君华,钟仕全. 基于面向对象分类的南方水稻种植面积提取方法[J]. 遥感技术与应用, 2011, 26(2): 163-168.
[12] 王焕萍,刘勇. 基于窗口傅立叶变换功率谱分析的盐田地区高分辨率遥感影像分割分类方法探讨[J]. 遥感技术与应用, 2011, 26(2): 233-238.
[13] 张兴余, 刘勇, 许宝荣, 蒋志勇, 王晓燕, 王思维, 许民, 杨红卫. 乌兰布和沙漠高分辨率遥感影像梭梭林解译方法探讨[J]. 遥感技术与应用, 2010, 25(6): 828-835.
[14] 邹丽丽, 崔海山, 李颖, 吴宇静. SAR与SPOT数据融合方法研究[J]. 遥感技术与应用, 2010, 25(6): 836-841.
[15] 王红岩,高志海,王琫瑜,李世明,白黎娜. 基于SPOT5遥感影像丰宁县植被地上生物量估测研究[J]. 遥感技术与应用, 2010, 25(5): 639-646.