Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (6): 1437-1446    DOI: 10.11873/j.issn.1004-0323.2022.6.1437
土壤水分专栏     
基于时空变异性的土壤水分观测网设计
王雪琴1(),张翔1,2(),陈能成1,2,马宏亮1
1.武汉大学 测绘遥感信息工程国家重点实验室,湖北 武汉 430079
2.中国地质大学(武汉) 国家地理信息系统工程技术研究中心 地理与信息工程学院,湖北 武汉 430074
Design of Soil Moisture Network based on Temporal and Spatial Variability
Xueqin Wang1(),Xiang Zhang1,2(),Nengcheng Chen1,2,Hongliang Ma1
1.State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,China
2.National Engineering Research Center of Geographic Information System,China University of Geosciences (Wuhan),Wuhan 430074,China
 全文: PDF(5218 KB)   HTML
摘要:

合理有效的土壤水分观测网能更好地监测土壤水分原位数据,并提供高精度的土壤水分信息。通过对武汉“1+8”城市圈2010—2019年土壤水分的时空变异性进行分析,并叠加现有站点分布情况和土地利用类型数据,对研究区域进行了两次分区,设计了一种基于时空变异性的土壤水分观测网优化布局方法。设计的观测网在已有的24个站点基础上,新增了79个站点,使现有单点控制面积下降到符合国家规范要求的381—792 km2之间,同时单点代表性相较于布设前平均提升了71.57%。该方法遵循了“先分区后布设”的思想,先利用空间相对连续的卫星遥感数据获取区域土壤水分地理规律,再推导地面站网的布局方案,可以为相关站网的优化布设提供一种新的参考。

关键词: TVDI土壤水分时空变异性分区优化观测网布设    
Abstract:

Reasonable and effective soil moisture observation network can better monitor regional soil moisture based on in-situ data and provide high-precision soil moisture information. Based on the study of spatial and temporal variability of soil moisture in the region from year 2010 to 2019, and superimposed with different types of auxiliary data, the study area was divided twice, and an optimal layout method of soil moisture observation network was designed. On the basis of the existing 24 stations, 79 new stations were added to the designed observation network, which reduced the monitoring area of the existing single point to 381—792 km2, and the monitoring efficiency increased by 71.57%. This method follows the idea of "partition before laying out", first utilizing the relative continuous satellite remote sensing data to acquire regional soil moisture geography law, and then deduce the layout plan of the ground station network, which can provide a new reference for the optimization of the layout of the related station network.

Key words: TVDI    Soil moisture    Spatio-temporal variability    Zoning optimization    Design of observation network
收稿日期: 2021-09-20 出版日期: 2023-02-15
ZTFLH:  TP79  
基金资助: 国家重点研发计划项目“城市多尺度综合感知技术与体系”(2018YFB2100500);国家自然科学基金项目“基于星地多源数据的干旱演变过程连续监测与定量分析方法研究”(41801339)
通讯作者: 张翔     E-mail: wangxueqin@whu.edu.cn;zhangxiang76@cug.edu.cn
作者简介: 王雪琴(1997-),女,湖北广水人,硕士研究生,主要从事土壤水分感知研究。E?mail: wangxueqin@whu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王雪琴
张翔
陈能成
马宏亮

引用本文:

王雪琴,张翔,陈能成,马宏亮. 基于时空变异性的土壤水分观测网设计[J]. 遥感技术与应用, 2022, 37(6): 1437-1446.

Xueqin Wang,Xiang Zhang,Nengcheng Chen,Hongliang Ma. Design of Soil Moisture Network based on Temporal and Spatial Variability. Remote Sensing Technology and Application, 2022, 37(6): 1437-1446.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.6.1437        http://www.rsta.ac.cn/CN/Y2022/V37/I6/1437

图1  研究区位置及现有站点空间分布
图2  技术流程图
图3  TVDI计算与成图
图4  2010—2019年研究区土壤水分时间均方根误差分布
图5  2010—2019年研究区土壤水分空间均方根误差分布图
图6  研究区空间分布图
图7  研究区二次分区图
图8  区域土壤水分观测网布设图
地级市现有站点新增站点

原始站网密度

(km2/站)

设计站网密度

(km2/站)

孝感市7131 270.77444.77
黄冈市10241 232.54513.56
天门市132 615.88653.97
武汉市3102 855.67659.00
鄂州市111 582.66791.33
潜江市132 002.91500.73
仙桃市132 518.60629.65
黄石市2102 289.90381.65
咸宁市6121 624.35541.45
表1  各市站点布设情况统计
1 Liu Qinhuo, Xin Jingfeng, Xin Xiaozhou, et al. Remote sensing monitoring of agricultural drought based on land surface temperature and vegetation index[J]. Science & Technology Review, 2007, 25(6): 12-18.
1 柳钦火, 辛景峰, 辛晓洲, 等. 基于地表温度和植被指数的农业干旱遥感监测方法[J]. 科技导报, 2007, 25(6):12-18.
2 Chen Shaodan, Zhang Liping, Shan Lijie, et al. Remote sensing retrieval of soil moisture in the middle and lower reaches of the Yangtze River and analysis of its influencing factors[J]. Journal of Applied Basic and Engineering Science, 2017, 25(4): 657-669.
2 陈少丹, 张利平, 闪丽洁, 等. 长江中下游流域土壤湿度遥感反演研究及其影响因素分析[J]. 应用基础与工程科学学报, 2017, 25(4):657-669.
3 Huang Yan, Zheng Wei. Design of forest ecosystem observation experiment platform based on wireless sensor networks[J]. Remote Sensing Technology and Application, 2021, 36(3): 502-510.
3 黄艳,郑玮. 基于无线传感器网络的森林生态系统观测试验平台构建[J]. 遥感技术与应用, 2021, 36(3): 502-510.
4 Zeng J Y, Li Z, Chen Q, et al. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations[J]. Remote Sensing of Environment,2015,163. DOI:10.1016/ j.rse.2015. 03.008 .
doi: 10.1016/ j.rse.2015. 03.008
5 Ma H L, Zeng J Y, Chen N C, et al. Satellite surface soil moisture from SMAP,SMOS,AMSR2 and ESA CCI:A comprehensive assessment using global ground-based observations [J]. Remote Sensing of Environment, 2019, 231. DOI:10.1016/ j.rse.2019.111215 .
doi: 10.1016/ j.rse.2019.111215
6 Fan Yue, Qiu Jianxiu, Dong Jianzhi, et al. Error characteristics of microwave soil moisture products based on Triple Collocation and its spatial-temporal pattern[J]. Remote Sensing Technology and Application, 2020, 35(1): 85-96.
6 范悦, 邱建秀, 董建志, 等. 基于Triple Collocation方法的微波土壤水分产品不确定性分析与时空变化规律研究[J]. 遥感技术与应用, 2020, 35(1): 85-96.
7 Ma H L, Zeng J Y, Zhang X, et al. Evaluation of six satellite- and model-based surface soil temperature datasets using global ground-based observations[J]. Remote Sensing of Environment,2021,264. DOI:10.1016/J.RSE. 2021.112605 .
doi: 10.1016/J.RSE. 2021.112605
8 Xu L, Chen N C, Chen Z Q, et al. Spatiotemporal forecasting in earth system science: Methods, uncertainties, predictability and future directions[J]. Earth-Science Reviews, 2021: 103828. DOI: 10.1016/j.earscirev.2021.103828 .
doi: 10.1016/j.earscirev.2021.103828
9 Dorigo W, Himmelbauer I, Aberer D, et al. The International soil moisture network: Serving earth system science for over a decade[J]. Hydrology and Earth System Sciences Discussions, 2021: 1-83. DOI: 10.5194/hess-25-5749-2021 .
doi: 10.5194/hess-25-5749-2021
10 Zhang X, Chen N C, Li J Z, et al. Multi-sensor integrated framework and index for agricultural drought monitoring[J]. Remote Sensing of Environment, 2017, 188: 141-163.
11 Chen D, Chen N C, Zhang X, et al. Next-Generation soil moisture sensor web: High density in-situ observation over NB-IoT[J]. IEEE Internet of Things Journal, 2021. DOI:10.1109/JIOT.2021. 3065077 .
doi: 10.1109/JIOT.2021. 3065077
12 Robinson D A, Binley A, Crook N, et al. Advancing process-based watershed hydrological research using near-surface geophysics: A vision for, and review of, electrical and magnetic geophysical methods[J]. Hydrological Process, 2008, 22(18): 3604–3635.
13 Zhang X, Chen N C, Chen Z Q, et al. Geospatial sensor web: A cyber-physical infrastructure for geoscience research and application[J]. Earth-Science Reviews,2018,185:684-703.
14 Kang G, Li X, Jin R, et al. Hybrid optimal design of the eco-hydrological wireless sensor network in the middle reach of the Heihe River Basin, China[J]. Sensors, 2014, 14(10):19095-19114.
15 Wang K, Chen N C, Tong D Q, et al. Optimizing the configuration of streamflow stations based on coverage maximization: A case study of the Jinsha River Basin[J]. Journal of Hydrology, 2015, 527: 172-183.
16 Wang G, Jin Heuvelink, Wang L. Sampling design optimization of a wireless sensor network for monitoring ecohydrological processes in the Babao River Basin, China[J]. International Journal of Geographical Information Science, 2015, 29(1): 92-110.
17 Xu Xinliang. Spatial distribution data set of China Monthly Vegetation Index (NDVI)[DB/OL]. 徐新良. 中国月度植被指数(NDVI)空间分布数据集[DB/OL]. 中国科学院资源环境科学数据中心数据注册与出版系统(http:∥www.resdc.cn/DOI),2018.DOI:10.12078/201806 0602 .
doi: 10.12078/201806 0602
18 Sandholt T I, Rasmussen K, Andeesen J. A simple interpretation of the surface temperature/ vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2): 213-224.
19 Wang C Y, Qi S H, Niu Z, et al. Evaluating soil moisture status in China using the Temperature–Vegetation Dryness Index (TVDI)[J]. Canadian Journal of Remote Sensing, 2014, 30(5):671-679.
20 Li Chao, Li Xuemei, Tian Yalin, et al. Time and space fusion model comparison of temperature vegetation drought index[J]. Remote Sensing Technology and Application, 2020, 35(4): 832-844.
20 李超, 李雪梅, 田亚林, 等. 温度植被干旱指数时空融合模型对比[J]. 遥感技术与应用, 2020, 35(4): 832-844.
21 Lawrence H, Wigneron J P, Demontoux F, et al. Evaluating the semi-empirical H~Q model, used to calculate the emissivity of a rough bare soil, with a numerical modeling approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 4075-4084.
22 Ran Qiong, Zhang Zengxiang, Zhang Guoping, et al. Correction of DEM for soil moisture retrieval by temperature vegetation drought index[J]. Science of Soil and Water Conservation, 2005, 3(2): 32-36.
22 冉琼, 张增祥, 张国平,等 .温度植被干旱指数反演全国土壤湿度的 DEM 订正[J].中国水土保持科学,2005,3(2):32-36.
23 Vachaud G, Desilans A P, Balabanis P, et al. Temporal stability of spatially measured soil-water probability density-function[J]. Soil Science Society of America Journal, 1985, 49(4): 822-846.
24 Li Boxiang, Chen Xiaoyong, Xu Wenting, Spatio-temporal variation of soil moisture based on SMOS downscaling data[J]. China Rural Water and Hydropower, 2019(8):5-11.
24 李伯祥, 陈晓勇, 徐雯婷. 基于SMOS降尺度数据的土壤水分时空变化分析研究[J]. 中国农村水利水电,2019(8):5-11.
25 Vachaud G, Desilans A P, Balabanis P,et al.Temporal stability of spatially measured soil-water probability density-function[J]. Soil Science Social of America Journal,1985,49(4):822-828.
26 Jacobs J M, Mohanty B P, Hsu E C,et al. SMEX02: field scale variability, time stability and similarity of soil moisture[J]. Remote Sensing of Environment,2004,92(4):436-446.
27 Sha Sha, Guo Ni, Li Yaohui, et al. Application status and problems of temperature vegetation drought index TVDI in China[J]. Arid Meteorology, 2014, 32(1):128-134.
27 沙莎, 郭铌, 李耀辉,等.我国温度植被旱情指数TVDI的应用现状及问题简述[J]. 干旱气象, 2014, 32(1):128-134.
28 Specifications for soil moisture monitoring [S]. Ministry of Water Resources of the People's Republic of China.
28 土壤墒情监测规范 [S].中华人民共和国水利部,SL 364-2015.
[1] 曹高岩,杨娜. 基于关键辅助参数数据的L-MEB亮度温度模拟研究[J]. 遥感技术与应用, 2022, 37(6): 1385-1391.
[2] 杨娜,汤燕杰,张宁馨,张恒杰,徐少博. 基于SMOS、SMAP数据的青藏高原季风及植被生长季土壤水分长消特征研究[J]. 遥感技术与应用, 2022, 37(6): 1373-1384.
[3] 黄健庭,杨娜,马超. SMAP L2多尺度土壤水分数据与ISMN实测数据的差异特征研究[J]. 遥感技术与应用, 2022, 37(6): 1392-1403.
[4] 杜绍杰,赵天杰,施建成,马春锋,邹德富,王振,姚盼盼,彭志晴,郑景耀. Sentinel-1和Sentinel-2协同反演地表土壤水分[J]. 遥感技术与应用, 2022, 37(6): 1404-1413.
[5] 黄钰玲,刘凯,王树东,王大成,苑峰,王保林,景文,王伟. 北方典型区域遥感和模型土壤水分产品的对比及评估[J]. 遥感技术与应用, 2022, 37(6): 1414-1426.
[6] 方西瑶,蒋玲梅,崔慧珍. 基于Sentinel-1雷达数据的青藏高原地区土壤水分反演研究[J]. 遥感技术与应用, 2022, 37(6): 1447-1459.
[7] 晏红波,李浩,卢献健,王佳华. 基于LST-VI特征空间的喀斯特地区土壤水分时空变化研究[J]. 遥感技术与应用, 2022, 37(6): 1460-1471.
[8] 姜涛,郑兴明,李晓洁,李晓峰,赵凯. 闪电河流域L波段地基微波辐射计RFI检测与电磁环境分析[J]. 遥感技术与应用, 2021, 36(5): 1022-1032.
[9] 王皓,郝莹,袁松,陈光舟,靳莉莉. SMAP土壤水分产品在淮河流域的适用性评估[J]. 遥感技术与应用, 2021, 36(5): 1009-1021.
[10] 肖窈,曾超,沈焕锋. 结合参量统计与时空融合的土壤水分降尺度方法[J]. 遥感技术与应用, 2021, 36(5): 1033-1043.
[11] 杨欣源,白晓静. 基于Sentinel-1和MODIS数据反演农田地表土壤水分—以REMEDHUS地区为例[J]. 遥感技术与应用, 2021, 36(5): 973-982.
[12] 杨奥莉,郑东海,文军,陆宣承,杨越,符晴. 青藏高原L波段微波辐射观测与土壤水分反演研究进展[J]. 遥感技术与应用, 2021, 36(5): 983-996.
[13] 彭书艳,赵龙,李婷婷,韩旭军,马明国,杨帅,杨跃程. 基于宇宙射线观测的喀斯特槽谷区典型流域土壤水分反演研究[J]. 遥感技术与应用, 2021, 36(5): 997-1008.
[14] 孙景霞,张冬有,侯宇初. 基于多源遥感数据协同反演森林地表土壤水分研究[J]. 遥感技术与应用, 2021, 36(3): 564-570.
[15] 蒋玲梅,崔慧珍,王功雪,杨建卫,王健,潘方博,苏旭,方西瑶. 积雪、土壤冻融与土壤水分遥感监测研究进展[J]. 遥感技术与应用, 2020, 35(6): 1237-1262.