1 | ROMIJIN E锛� LANTICAN C B锛� HEROLD M锛� et al. Assessing change in national forest monitoring capacities of 99 tropical countries锛籎锛�. Forest Ecology & Management锛� 2015锛� 352锛�109-123. DOI锛� 10.1016/j.foreco.2015.06.003 |
2 | YAN Wei锛� ZHOU Wen锛� YI Lilong锛� et al. Research progress of remote sensing classification and change monitoring on forest types锛籎锛�. Remote Sensing Technology and Application锛� 2019锛� 34锛�3锛夛細445-454. |
2 | 棰滀紵锛� 鍛ㄩ洴锛� 鏄撳埄榫欙紝 绛�. 妫灄绫诲瀷閬ユ劅鍒嗙被鍙婂彉鍖栫洃娴嬬爺绌惰繘灞曪蓟J锛�. 閬ユ劅鎶�鏈笌搴旂敤锛� 2019锛� 34锛�03锛夛細445-454. |
3 | GUO Ruixia. Research on larch plantation recognition based on multi-source Data锛籇锛�.Xi鈥檃n锛歑i鈥檃n University of Science and Technology锛� 2019. |
3 | 閮憺闇�. 鍩轰簬澶氭簮鏁版嵁鐨勮惤鍙舵澗浜哄伐鏋楄瘑鍒爺绌讹蓟D锛�. 瑗垮畨锛氳タ瀹夌鎶�澶у锛� 2019. |
4 | GISLASON P O锛� BENEDIKTSSON J A锛� SVEINSSON J R. Random forests for land cover classification锛籎锛�. Pattern Recognition Letters锛�2006锛�27锛�294-300. DOI锛�10.1016/j.patrec. 2005.08.011 |
5 | BREIMAN L. Random forests锛籎锛�. Machine Learning锛� 2001锛� 45锛�1锛夛細 5-32. DOI锛� 10.1023/A锛�1010933404324 . |
6 | REN Chong. Forest types precise classification and forest resources change monitoring based on medium and high spatial resolution remote sensing images锛籇锛�. Beijing锛欳hinese Academy of Forestry锛� 2016. |
6 | 浠诲啿. 涓珮鍒嗚鲸鐜囬仴鎰熷奖鍍忔.鏋楃被鍨嬬簿缁嗗垎绫讳笌妫灄璧勬簮鍙樺寲鐩戞祴鎶�鏈爺绌讹蓟D锛�. 鍖椾含锛氫腑鍥芥灄涓氱瀛︾爺绌堕櫌锛� 2016. |
7 | IMMITZER M锛� VUOLO F锛� ATZBERGER C. First experience with Sentinel-2 data for crop and tree species classifications in Central Europe锛籎锛�. Remote Sensing锛� 2016锛� 8锛�3锛夛細166. DOI锛�10.3390/rs8030166 |
8 | WANG Q锛� SHI W锛� LI Z锛� et al. Fusion of Sentinel-2 images锛籎锛�. Remote Sensing of Environment锛�2016锛�187锛�241-252. DOI锛� 10.1016/j.rse.2016.10.030 |
9 | PERSSON M锛� LINDBERG E锛� REESE H. Tree species classification with multi-temporal Sentinel-2 data锛籎锛�. Remote Sen-sing锛�2018锛�10锛�11锛夛細1794. DOI锛�10.3390/rs10111794 |
10 | GRABSKA E锛� FRANTZ D锛� OSTAPOWICZ K. Evaluation of machine learning algorithms for forest stand species mapping using Sentinel-2 imagery and environmental data in the polish carpathians锛籎锛�. Remote Sensing of Environment锛�2020锛� 251锛�112103. DOI锛� 10.1016/j.rse.2020.112103 |
11 | YOU H T锛� HUANG Y W锛� QIN Z G锛� et al.Forest Tree Species Classification based on Sentinel-2 images and auxiliary data锛籎锛�. Forests锛�2022锛�13锛�9锛夛細1416. DOI锛�10.3390/F13091416 |
12 | BENZ U C锛� HOFMANN P锛� WILLHAUCK G锛� et al. Multi-resolution锛� object-oriented fuzzy analysis of remote sensing data for GIS-ready Information锛籎锛�. ISPRS Journal of Photogrammetry and Remote Sensing锛� 2004锛� 58锛�3-4锛夛細239-258. DOI锛�10.1016/j.isprsjprs.2003.10.002 |
13 | CHEN J锛� CHEN J锛� LIAO A P锛� et al. Global land cover mapping at 30 m resolution锛� A POK-based operational approach锛籎锛�. ISPRS Journal of Photogrammetry and Remote Sensing锛� 2015锛� 103锛�7-27. DOI锛� 10.1016/j.isprsjprs.2014.09.002 |
14 | WESSEL M锛� BRANDMEIER M锛� TIEDE D. Evaluation of different machine learning algorithms for scalable classification of tree types and tree species based on Sentinel-2 Data锛籎锛�. Remote Sensing锛�2018锛�10锛�9锛夛細1419. DOI锛�10.3390/rs10091419 |
15 | MAO Lijun锛� LI Mingshi. Integrating Sentinel active and passive data to map land cover in a National Park from GEE platform锛籎锛�. Geomatics and Information Science of Wuhan University锛�2023锛�48锛�5锛夛細756-764. |
15 | 姣涗附鍚涳紝鏉庢槑璇�. GEE鐜涓嬭仈鍚� Sentinel涓昏鍔ㄩ仴鎰熸暟鎹殑鍥藉鍏洯鍦熷湴瑕嗙洊鍒嗙被锛籎锛�. 姝︽眽澶у瀛︽姤锛堜俊鎭瀛︾増锛夛紝2023锛�48锛�5锛夛細756-764. |
16 | VARIN M锛� CHALGHAF B锛� JOANISSE G. Object-based approach using very high spatial resolution 16-band WorldView-3 and LiDAR data for tree species classification in a broadleaf forest in Quebec锛孋anada锛籎锛�.Remote Sensing锛�2020锛� 12锛�3092锛夛細1-33. DOI锛�10.3390/rs12183092 |
17 | GORELICK N锛� HANCHER M锛� DIXON M锛� et al. Google Earth Engine锛� Planetary-scale geospatial analysis for everyone锛籎锛�. Remote Sensing of Environment锛�2017锛�202锛�18-27.DOI锛� 10.1016/j.rse.2017.06.031 |
18 | CALDER ON-LOOR M锛� HADJIKAKOU M锛� BRYAN M A. High-resolution wall-to-wall land-cover mapping and land change assessment for Australia from 1985 to 2015-science direct锛籎锛�. Remote Sensing of Environment锛�2021锛�252锛�112148. DOI锛� 10.1016/j.rse.2020.112148 |
19 | JIA M M锛� WANG Z M锛� MAO D H锛� et al. Rapid锛� robust锛� and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine锛籎锛�. Remote Sensing of Environment锛� 2021锛�255锛�1-2锛夛細112285. DOI锛�10.1016/j.rse.2021.112285 |
20 | XUE Zhaohui锛� QIAN Siyu. Fusion of Landsat-8 and Sentinel-2 data for mangrove phenology information extraction and classification锛籎锛�. National Remote Sensing Bulletin锛�2022锛�26锛�6锛夛細1121-1142. |
20 | 钖涙湞杈夛紝閽辨�濈窘.铻嶅悎Landsat 8涓嶴entinel-2鏁版嵁鐨勭孩鏍戞灄鐗╁�欎俊鎭彁鍙栦笌鍒嗙被锛籎锛�.閬ユ劅瀛︽姤锛�2022锛�26锛�6锛夛細1121-1142. |
21 | LIU Wande锛� SU Jianrong锛� LI Shuaifeng锛宔t al.Variation of non-structural carbohydrates for the dominant species in a monsoon broad-leaved evergreen forest in Pu鈥檈r锛� Yunnan Province锛籎锛�. Scientia Silvae Sinicae锛�2017锛�53锛�6锛夛細1-9. |
21 | 鍒樹竾寰凤紝鑻忓缓鑽o紝鏉庡竻閿嬶紝绛�.浜戝崡鏅幢瀛i甯哥豢闃斿彾鏋椾富瑕佹爲绉嶉潪缁撴瀯鎬х⒊姘村寲鍚堢墿鍙樺紓鍒嗘瀽锛籎锛�. 鏋椾笟绉戝锛�2017锛�53锛�6锛夛細1-9. |
22 | SU Junwu锛� LIU Yonggang锛� CHEN Qiang锛� et al. Stand structure of pinus kesiya var. langbianensis plantation in Wanzhangshan Forest Farm锛孻unnan Province锛籎锛�.Journal of West China Forestry Science锛� 2021锛� 50锛�3锛夛細8.鑻忎繆姝︼紝 鍒樻案鍒氾紝 闄堝己锛� 绛�. 浜戝崡涓囨帉灞辨灄鍦烘�濊寘鏉炬灄鍒嗙粨鏋勭壒寰侊蓟J锛�. 瑗块儴鏋椾笟绉戝锛� 2021锛� 50锛�3锛夛細8. |
23 | XIONG Haoli锛� ZHOU Xiaocheng锛� WANG Xiaoqin锛� et al. Mapping the spatial distribution of tea plantations with 10 m resolution in Fujian Province using Google Earth Engine锛籎锛�. Journal of Geo-information Science锛�2021锛�23锛�7锛夛細1325-1337. |
23 | 鐔婄殦涓斤紝 鍛ㄥ皬鎴愶紝 姹皬閽︼紝 绛�. 鍩轰簬GEE浜戝钩鍙扮殑绂忓缓鐪�10 m鍒嗚鲸鐜囪尪鍥笓棰樼┖闂村垎甯冨埗鍥撅蓟J锛�. 鍦扮悆淇℃伅绉戝瀛︽姤锛� 2021锛� 23锛�7锛夛細1325-1337. |
24 | FARR T G锛� ROSEN P A锛� CARO E锛� et al. The shuttle radar topography mission锛籎锛�. Reviews of Geophysics锛� 2007锛� 45锛�2锛夛細361.DOI锛� 10.1029/2005RG000183 |
25 | TUCKER C J. Red and photographic infrared linear combinations for monitoring vegetation锛籎锛�. Remote Sensing and Environment锛� 1979锛� 8锛�2锛夛細127-150. DOI锛� 10.1016/0034-4257锛�79锛�90013-0 |
26 | LOPEZ GARCIA M J锛� CASELLES V. Mapping burns and natural reforestation using thematic mapper data锛籎锛�. Geocarto International锛�1991锛�6锛�1锛夛細31-37.DOI锛�10.1080/10106049 109354290 |
27 | RIKIMARU A. Landsat TM data processing guide for forest canopy density mapping and monitoring model锛籆锛解垾 ITTO Workshop on Utilization of Remote Sensing in Site Assessment and Planning for Rehabilitation of Logged- over Forest锛� Bangkok锛� Thailand锛� 1996锛� 8锛�1-8 |
28 | DATT B. A new reflectance index for remote sensing of chlorophyll content in higher plants锛� Tests using eucalyptus leaves锛籎锛�. Journal of Plant Physiology锛�1999锛�154锛�1锛夛細30-36. DOI锛� 10.1016/S0176-1617锛�99锛�80314-9 |
29 | GITELSON A A锛� KAUFMAN Y J锛� MERZLYAK M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS锛籎锛�. Remote Sensing of Environment锛� 1996锛� 58锛�3锛夛細289-298. DOI锛� 10.1016/S0034-4257锛�96锛�00072-7 |
30 | DEVENTER V锛� WARD A D锛� GOWDA P H锛� et al. Using thematic mapper data to identify contrasting soil plains and tillage practices锛籎锛�. Photogrammetric Engineering & Remote Sensing锛� 1997锛� 63锛�1锛夛細87-93. DOI锛� 10.1117/12.277087 |
31 | HUETE A R. A Soil-adjusted Vegetation Index 锛圫AVI锛夛蓟J锛�. Remote Sensing of Environment锛� 1988锛� 25锛�3锛夛細37-53. |
32 | CHEN Zhiqiang锛� CHEN Jianfei. Image recognition analysis and mapping of urban land based on NDBI index method锛籎锛�. Journal of Geo-information Science锛� 2006锛� 8锛�2锛夛細137-140. |
32 | 闄堝織寮猴紝闄堝仴椋�.鍩轰簬NDBI鎸囨暟娉曠殑鍩庨晣鐢ㄥ湴褰卞儚璇嗗埆鍒嗘瀽涓庡埗鍥撅蓟J锛�.鍦扮悆淇℃伅绉戝锛�2006锛�8锛�2锛夛細137-140. |
33 | XU Hanqiu. A study on information extraction of water body with the Modified Normalized Difference Water Index 锛� MNDWI锛夛蓟J锛�. Journal of Remote Sensing锛�2005锛�9锛�5锛夛細589-595. |
33 | 寰愭兜绉�. 鍒╃敤鏀硅繘鐨勫綊涓�鍖栧樊寮傛按浣撴寚鏁帮紙MNDWI锛夋彁鍙栨按浣撲俊鎭殑鐮旂┒锛籎锛�. 閬ユ劅瀛︽姤锛� 2005锛�9锛�5锛夛細589-595. |
34 | RADOUX J锛� CHOME G锛� JACQUES D C锛� et al. Sentinel-2鈥檚 potential for sub-pixel landscape feature detection锛籎锛�. Remote Sensing锛� 2016锛� 8锛�6锛夛細488. DOI锛�10.3390/rs8060488 |
35 | GITELSON A A锛� MERZLYAK M N. Remote estimation of Chlorophyll content in higher plant leaves锛籎锛�. International Journal of Remote Sensing锛� 1997锛� 18锛�12锛夛細2691-2697.DOI锛� 10.1080/014311697217558 |
36 | ZHANG Lei锛� GONG Zhaoning锛� WANG Qiwei锛� et al. Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images锛籎锛�. Journal of Remote Sensing锛� 23锛�2锛夛細313-326.寮犵锛� 瀹厗瀹侊紝 鐜嬪惎涓猴紝 绛�. Sentinel-2褰卞儚澶氱壒寰佷紭閫夌殑榛勬渤涓夎娲叉箍鍦颁俊鎭彁鍙栵蓟J锛�. 閬ユ劅瀛︽姤锛� 2019锛� 23锛�2锛夛細313-326. |
37 | YUAN Xu. Research on image segmentation method based on super-pexel锛籇锛�. Wuhan锛欻uazhong University of Science and Technology锛� 2019. |
37 | 琚佹棴. 鍩轰簬瓒呭儚绱犵殑鍥惧儚鍒嗗壊鏂规硶鐮旂┒锛籇锛�. 姝︽眽锛氬崕涓鎶�澶у锛� 2019. |
38 | ACHANTA R锛� SUSSTRUNK S. Superpixels and polygons using Simple Non-iterative Clustering锛籆锛解垾 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017锛�4895-4904. |
39 | HARALICK R M锛� SHANMUGAM K锛� DINSTEIN I. Textural features for image classification锛籎锛�. Studies in Media and Communication锛� 1973锛� SMC-3锛�6锛夛細610-621. DOI锛� 10.1109/TSMC.1973.4309314 |
40 | STROMANN O锛� NASCETTI A锛� YOUSIF O锛� et al. Dimensionality reduction and feature selection for object-based land cover classification based on Sentinel-1 and Sentinel-2 time series using Google Earth Engine锛籎锛�. Remote Sensing锛� 2019锛� 12锛�1锛夛細76. DOI锛�10.3390/rs12010076 |
41 | FOODY G. Assessing the accuracy of remotely sensed data锛� Principles and practices锛籎锛�. The Photogrammetric Record锛� 2010锛�25锛�130锛夛細204-205. DOI锛�10.1111/j.1477-9730. 2010. 00574_2.x |
42 | JIA Wen锛� PANG Yong锛� YUE Cairong锛� et al. Mountain forest classification based on AISA Eagle II Hyperspectral data锛籎锛�. Forest Inventory and Planning锛� 2015锛� 40锛�1锛夛細9-14. |
42 | 鑽氭枃锛屽簽鍕囷紝宀冲僵鑽o紝绛�. 鍩轰簬AISA Eagle II鏈鸿浇楂樺厜璋辨暟鎹殑鏅幢甯傚北鍖烘.鏋楀垎绫伙蓟J锛�. 鏋椾笟璋冩煡瑙勫垝锛�2015锛�40锛�1锛夛細9-14. |
43 | LIU Yijun锛� PANG Yong锛� LIAO Shengxi锛� et al. Merged airborne lidar and hyperspectral data for tree species classification in Puer鈥� s Mountainous area锛籎锛�. Forest Research锛� 2016锛� 29锛�3锛夛細407-412. |
43 | 鍒樻�″悰锛� 搴炲媷锛� 寤栧0鐔欙紝 绛�. 鏈鸿浇LiDAR鍜岄珮鍏夎氨铻嶅悎瀹炵幇鏅幢灞卞尯鏍戠鍒嗙被锛籎锛�. 鏋椾笟绉戝鐮旂┒锛� 2016锛� 29锛�3锛夛細407-412. |
44 | WANG M C锛� LI M J锛� WANG F Y锛� et al. Exploring the optimal feature combination of tree species classification by fusing multi-feature and multi-temporal Sentinel-2 data in Changbai Mountain锛籎锛�.Forests锛�2022锛�13锛�7锛�.DOI锛�10.3390/F13071058 |
45 | SMITH G. Hybrid pixel- and object-based approach to habitat condition monitoring锛籎锛�. Verlag Der sterrchischen Akademie Der Wissenschaften锛�2013锛�2013锛�552-555. DOI锛�10.1553/giscience2013s552 |