閬ユ劅鎶�鏈笌搴旂敤 鈥衡�� 2023, Vol. 38 鈥衡�� Issue (2): 432-442.DOI: 10.11873/j.issn.1004-0323.2023.2.0432

鈥� 鏋椾笟閬ユ劅涓撴爮 鈥� 涓婁竴绡�    涓嬩竴绡�

鍩轰簬GEE浜戝钩鍙板拰Sentinel鈦�2鏁版嵁鐨勬櫘娲卞競妫灄瑕嗙洊鍒跺浘

闂槑1(),搴炲媷2(),浣曚簯鐜�3,钂欒瘲鏍�2,榄忓穽4   

  1. 1.浜戝崡澶у鍥介檯娌虫祦涓庣敓鎬佸畨鍏ㄧ爺绌堕櫌锛屼簯鍗� 鏄嗘槑 650500
    2.涓浗鏋椾笟绉戝鐮旂┒闄㈣祫婧愪俊鎭爺绌舵墍锛屽寳浜� 100091
    3.浜戝崡澶у鍦扮悆绉戝瀛﹂櫌锛屼簯鍗� 鏄嗘槑 650500
    4.浜戝崡鐪佹灄涓氬拰鑽夊師绉戝闄紝浜戝崡 鏄嗘槑 650204
  • 鏀剁鏃ユ湡:2022-01-10 淇洖鏃ユ湡:2023-02-18 鍑虹増鏃ユ湡:2023-04-20 鍙戝竷鏃ユ湡:2023-05-29
  • 閫氳浣滆��: 搴炲媷
  • 浣滆�呯畝浠�:闂� 鏄庯紙1997-锛夛紝鐢凤紝娌冲崡鍗楅槼浜猴紝纭曞+鐮旂┒鐢燂紝涓昏浠庝簨鏋椾笟閬ユ劅鍒嗙被鐮旂┒銆侲?mail锛�a18338191276@163.com
  • 鍩洪噾璧勫姪:
    鍥介槻绉戝伐灞�楂樺垎涓撻」鈥滄櫘娲遍珮鍒嗛仴鎰熺湡瀹炴�ф楠岀珯椤圭洰鈥�(21?Y30A02?9001?20/22?6);浜氬お妫灄鎭㈠涓庡彲鎸佺画绠$悊缃戠粶椤圭洰鈥滈潰鍚戝彲鎸佺画缁忚惀鐨勫尯鍩熸.鏋楄娴嬧��(2018P1?CAF)

Remote Sensing based Land Cover Classification of Pu鈥瞖r City Using GEE Cloud Platform and Sentinel-2 Data

Ming YAN1(),Yong PANG2(),Yunling HE3,Shili MENG2,Wei WEI4   

  1. 1.Institute of International Rivers and Eco-Security Security锛孻unnan University锛孠unming 650500锛孋hina
    2.Research Institute of Forest Resources Information Techniques锛孋hinese Academy of Forestry锛孊eijing 100091锛孋hina
    3.School of Earth Sciences锛孻unnan University锛孠unming 650500锛孋hina
    4.Yunnan academy of forestry and grassland锛孠unming 650204锛孋hina
  • Received:2022-01-10 Revised:2023-02-18 Online:2023-04-20 Published:2023-05-29
  • Contact: Yong PANG

鎽樿锛�

蹇�熷噯纭幏鍙栨.鏋楃殑绌洪棿鍒嗗竷瀵硅瘎浼版.鏋楄祫婧愬拰鐢熸�佺幆澧冪姸鍐靛叿鏈夐噸瑕佺殑鎰忎箟銆備互浜戝崡鐪佹櫘娲卞競涓虹爺绌跺尯锛屽熀浜嶨oogle Earth Engine锛圙EE锛夊钩鍙板拰Sentinel-2褰卞儚鏁版嵁锛岀粨鍚堝疄鍦拌皟鏌ユ暟鎹�佹満杞介仴鎰熸暟鎹強鍦板舰杈呭姪鏁版嵁锛屾彁鍙栧奖鍍忕殑鍏夎氨鐗瑰緛銆佺汗鐞嗙壒寰佷互鍙婂湴褰㈢壒寰侊紝閫氳繃鐗瑰緛绛涢�夛紝寰楀埌閫傚悎妫灄鍒嗙被鐨勬渶浼樼壒寰佹暟鎹泦銆傜粨鍚堢畝鍗曠嚎鎬ч潪杩唬鑱氱被锛圫imple Non-Iterative Clustering锛孲NIC锛夎秴鍍忕礌鍒嗗壊绠楁硶锛屾帰绌朵笉鍚屽垎绫绘柟娉曘�佺壒寰佸彉閲忕瓑鍥犵礌瀵瑰垎绫荤簿搴︾殑褰卞搷銆傜粨鏋滆〃鏄庯細闈㈠悜瀵硅薄鍒嗙被鏂规硶鐨勫垎绫荤簿搴﹁浼樹簬鍩轰簬鍍忓厓鍒嗙被鏂规硶锛屽垎绫绘�讳綋绮惧害涓�88.21锛咃紝Kappa绯绘暟涓�0.87锛屽彲浠ヨ緝涓哄噯纭湴瀵规櫘娲卞競杩涜妫灄瑕嗙洊鍒跺浘銆傞潰鍚戝璞℃柟娉曞彲浠ユ湁鏁堝噺杞烩�滄鐩愮幇璞♀�濓紝鐗瑰緛浼橀�夐伩鍏嶄簡鍐椾綑淇℃伅瀵瑰垎绫荤粨鏋滅殑褰卞搷锛屾湁鏁堟彁楂樹簡鍒嗙被鏁堢巼銆侴EE骞冲彴涓庨潰鍚戝璞℃柟娉曠粨鍚堝彲浠ユ彁渚涘ぇ鍖哄煙銆侀珮绮惧害鐨勬.鏋楄鐩栭仴鎰熷揩閫熷埗鍥俱��

鍏抽敭璇�: 妫灄瑕嗙洊, 闈㈠悜瀵硅薄鍒嗙被, 褰卞儚鍒嗗壊, 鐗瑰緛浼橀��

Abstract:

Quick and accurate access to the spatial distribution of forests is of great significance for assessing the status of forest resources and ecological environment protection.Taking Pu'er City in Yunnan Province as the research area锛� Based on the Google Earth Engine 锛圙EE锛� platform and Sentinel-2 image data锛宑ombined with the field survey data锛� airborne remote sensing data and terrain auxiliary data锛� the spectral features锛� texture features and topographic features were extracted. Through feature screening锛� the optimal feature set suitable for forest classification was obtained.Combining Simple Non-Iterative Clustering 锛圫NIC锛� superpixel segmentation algorithmto explore the influence of different classification methods and characteristic variables on the classification accuracy.The results showed that the classification accuracy of the object-oriented classification method was higher than that of the pixel-based classification method锛� with an overall classification accuracy of 88.21% and the Kappa coefficient of 0.87. which can accurately map the forest cover of Pu 'er City. The object-oriented method can effectively alleviate the 鈥渟alt and pepper phenomenon鈥濓紝 and feature optimization avoids the influence of redundant information on classification results and effectively improves classification efficiency. The combination of GEE platform and object-oriented method can provide large-area锛� high-precision forest cover remote sensing rapid mapping.

Key words: Forest cover, Object-oriented classification, Image segmentation, Feature selection

涓浘鍒嗙被鍙�: