1 |
Union of Concerned Scientists (UCS) Satellite Database[DB/OL]. https:∥www.ucsusa.org/resources/satellite-database, 2022-12-31. 2023-07-18.
|
2 |
VAZQUEZ A J, ERWIN R S. On the tractability of satellite range scheduling[J]. Optimization Letters, 2015, 9(2): 311-327. DOI: 10.1007/s11590-014-0744-8
doi: 10.1007/s11590-014-0744-8
|
3 |
NIU X, TANG H, WU L. Satellite scheduling of large areal tasks for rapid response to natural disaster using a multi-objective genetic algorithm[J]. International Journal of Disaster Risk Reduction,2018,28:813-825. DOI:10.1016/j.ijdrr. 2018.02.013
doi: 10.1016/j.ijdrr. 2018.02.013
|
4 |
GAROUANI A EL, MULLA D J, GAROUANI S EL, et al. Analysis of urban growth and sprawl from remote sensing data: Case of Fez, Morocco[J]. International Journal of Sustainable Built Environment, 2017, 6(1): 160-169. DOI: 10.1016/j.ijsbe.2017.02.003
doi: 10.1016/j.ijsbe.2017.02.003
|
5 |
KHALID N, ULLAH S, AHMAD S S, et al. A remotely sensed tracking of forest cover and associated temperature change in Margalla hills[J]. International Journal of Digital Earth,2019,12(10):1133-1150. DOI:10.1080/17538947. 2018.1448008
doi: 10.1080/17538947. 2018.1448008
|
6 |
RIVETT C, PONTECORVO C. Improving satellite surveillance through optimal assignment of assets[R]. Defence Science and Technology Organisation Edinburgh (Australia) Intelligence Surveillance Reconn Div, 2003.
|
7 |
RUAN Qiming, TAN Yuejin, LI Yongtai, et al. Using constraint satisfaction to cooperate satellites' activities for the mission of area target observation[J]. Journal of Astronautics, 2007, 28(1): 5.阮启明, 谭跃进, 李永太, 等. 基于约束满足的多星对区域目标观测活动协同[J]. 宇航学报, 2007, 28(1): 5.
|
8 |
SHAO X, ZHANG Z, WANG J, et al. NSGA-II-based multi-objective mission planning method for satellite formation system[J]. Journal of Aerospace Technology and Management, 2016, 8: 451-458. DOI: 10.5028/jatm.v8i4.700
doi: 10.5028/jatm.v8i4.700
|
9 |
LIU Huajun, CAI Bo, ZHU Qing. Self-adaptive planning method of imaging reconnaissance satellites area coverage[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1719-1725.
|
9 |
刘华俊, 蔡波, 朱庆. 一种成像卫星区域覆盖的自适应规划方法[J]. 武汉大学学报·信息科学版, 2017, 42(12): 1719-1725.
|
10 |
XU Yudong, ZHOU Jingbo, YIN Jiazhao, et al. Review of mission planning strategies and applications of earth observation satellites[J]. Radio Engineering, 2021, 51(8): 681-690.
|
10 |
许宇栋, 周敬博, 尹嘉昭, 等. 对地观测卫星任务规划策略及应用研究综述[J]. 无线电工程, 2021, 51(8): 681-690.
|
11 |
ZHU W, HU X, XIA W, et al. A three-phase solution method for the scheduling problem of using earth observation satellites to observe polygon requests[J]. Computers & Industrial Engineering, 2019, 130(2019): 97-107. DOI: 10.1016/j.cie.2019.02.014
doi: 10.1016/j.cie.2019.02.014
|
12 |
YANG Jiwei, FU Wei, HAN Li, et al. Regional target planning algorithm of satellite imaging based on global grid[J]. Spacecraft Engineering, 2021, 30(1): 31-38.
|
12 |
杨纪伟, 付伟, 韩丽, 等. 基于全球网格的卫星成像区域目标规划算法 [J]. 航天器工程, 2021, 30(1): 31-38.
|
13 |
LI X. Two-archive2 algorithm for large-scale polygon targets observation scheduling problem[C]∥Proceedings of the 2nd International Conference on Information Technology and Management Engineering, Shanghai, 2017: 23-24.
|
14 |
XU Y, LIU X, HE R, et al. Multi-objective satellite scheduling approach for very large areal observation[C]∥IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018, 435(1): 012037.
|
15 |
SHEN Xiajiong, WU Xiaoyang, WANG Gengke, et al. Remote sensing satellite covering method over ground facing to any geometric area[J]. Application Research of Computers, 2016, 33(7): 1999-2013.
|
15 |
沈夏炯, 吴晓洋, 王更科, 等. 面向任意几何区域的遥感卫星对地覆盖法[J]. 计算机应用研究, 2016, 33(7): 1999-2013.
|
16 |
PENG Pan, SONG Zhiming, NI Tao. Application of improved net-point method to solving area coverage problem[J].Chinese Journal of Engineering Geophysics, 2019, 16(3): 395-402.
|
16 |
彭攀, 宋志明, 倪涛. 改进的网格点法在区域覆盖问题中的应用[J]. 工程地球物理学报, 2019, 16(3): 395-402.
|
17 |
WANG Rongfeng, HU Min. Algorithm for satellite regional coverage analysis based on scanline[J]. Computer Engineering, 2020, 46(1): 243-246.
|
17 |
汪荣峰, 胡敏. 基于扫描线的卫星区域覆盖分析算法[J]. 计算机工程, 2020, 46(1): 243-246.
|
18 |
LIU X D, CHEN Y W, LONG Y J. A MapX-based preprocessing approach for multi-satellite cooperative observation towards area target[J]. Systems Engineering-Theory & Practice, 2010, 30: 2269-2275.
|
19 |
HE Y, XU M, YANG Z, et al. Scheduling imaging mission for area target based on satellite constellation[C]∥The 27th Chinese Control and Decision Conference, Qingdao, 2015: 3225-3230.
|
20 |
PAN Yao, CHI Zhongming, RAO Qilong, et al. Dynamic segmenting method of polygon target based on FOV for remote sensing satellite imaging[J]. Spacecraft Engineering, 2017,26(3):38-42.
|
20 |
潘耀, 池忠明, 饶启龙, 等. 基于视场角的遥感卫星成像多边形区域目标动态分解方法[J]. 航天器工程, 2017, 26(3): 38-42.
|
21 |
ZHANG G, LI X, HU G, et al. Mission planning issues of imaging satellites: Summary, discussion, and prospects[J]. International Journal of Aerospace Engineering, 2021, 2021: 1-20.
|
22 |
BAI Baocun, RUAN Qiming, CHEN Yingwu. Dynamic segmenting method of polygon for remote sensing saltellites observing[J]. Operations Research and Management Science, 2008, 17(2): 43-48.
|
22 |
白保存, 阮启明, 陈英武. 多星协同观测条件下区域目标的动态划分方法[J]. 运筹与管理, 2008, 17(2): 43-48.
|
23 |
HE R, BAI B, CHEN Y, et al. Multi-satellite mission planning for environmental and disaster monitoring satellite system[C]∥SpaceOps 2008 Conference, Heidelberg, 2008: 3488.
|
24 |
YU Jing, XI Jinjun, YU Longjiang, et al. Study of one-orbit multi-strips splicing imaging for agile satellite[J]. Spacecraft Engineering, 2015, 24(2): 27-34.
|
24 |
余婧, 喜进军, 于龙江, 等. 敏捷卫星同轨多条带拼幅成像模式研究[J]. 航天器工程, 2015, 24(2): 27-34.
|
25 |
YAO Jingyu. Research on multiple satellite scheduling method oriented to regional target observation[D]. Hefei: Hefei University of Technology, 2020.
|
25 |
姚靖宇. 面向区域目标观测的多星调度方法研究[D]. 合肥: 合肥工业大学, 2020.
|
26 |
BRANDIMARTE P. Scheduling satellite launch missions: an MILP approach[J]. Journal of Scheduling, 2013, 16(1): 29-45. DOI: 10.1007/s10951-012-0304-y
doi: 10.1007/s10951-012-0304-y
|
27 |
RAMAN V, GILL N S. Review of different heuristic algorithms for solving travelling salesman problem [J]. International Journal of Advanced Research in Computer Science, 2017, 8(5): 423-425.
|
28 |
BEHESHTI Z, SHAMSUDDIN S M H. A review of population-based meta-heuristic algorithms[J]. International Journal of Advances in Soft Computing and its Applications, 2013, 5(1): 1-35.
|
29 |
BIANCHESSI N, CORDEAU J F, DESROSIERS J, et al. A heuristic for the multi-satellite, multi-orbit and multi-user management of earth observation satellites[J]. European Journal of Operational Research, 2007, 177(2): 750-762. DOI: 10.1016/j.ejor.2005.12.026
doi: 10.1016/j.ejor.2005.12.026
|
30 |
MANSOUR M A, DESSOUKY M M. A genetic algorithm approach for solving the daily photograph selection problem of the SPOT5 satellite[J]. Computers Industrial Engineering, 2010, 58(3): 509-520. DOI: 10.1016/j.cie.2009.11.012
doi: 10.1016/j.cie.2009.11.012
|
31 |
GLOBUS A, CRAWFORD J, LOHN J, et al. Scheduling earth observing satellites with evolutionary algorithms[C]∥International Conference on Space Mission Challenges for Information Technology, California, 2003.
|
32 |
CHEN M, WEN J, SONG Y J, et al. A population perturbation and elimination strategy based genetic algorithm for multi-satellite TT&C scheduling problem[J]. Swarm Evolutionary Computation,2021,65:100912. DOI:10.1016/j.swevo.2021. 100912
doi: 10.1016/j.swevo.2021. 100912
|
33 |
FONSECA C M, FLEMING P J. An overview of evolutionary algorithms in multiobjective optimization[J]. Evolutionary Computation, 1995, 3(1): 1-16.
|
34 |
DENG W, ZHANG X, ZHOU Y, et al. An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems[J]. Information Sciences, 2022, 585: 441-453. DOI: 10.1016/j.ins.2021.11.052
doi: 10.1016/j.ins.2021.11.052
|
35 |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2002,6(2): 182-197.
|
36 |
CHEN Y, XU M, SHEN X, et al. A multi-objective modeling method of multi-satellite imaging task planning for large regional mapping[J]. Remote Sensing, 2020, 12(3): 344. DOI: 10.3390/rs12030344
doi: 10.3390/rs12030344
|
37 |
WANG H, JIAO L, YAO X. Two_Arch2: An improved two-archive algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(4): 524-541.
|
38 |
WEI L, XING L, WAN Q, et al. A multi-objective memetic approach for time-dependent agile earth observation satellite scheduling problem[J]. Computers Industrial Engineering, 2021, 159: 107530. DOI: 10.1016/j.cie.2021.107530
doi: 10.1016/j.cie.2021.107530
|
39 |
MOSCATO P. On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms[J]. Caltech Concurrent Computation Program, C3P Report, 1989, 826: 1989.
|
40 |
WANG J, JING N, LI J, et al. A multi-objective imaging scheduling approach for earth observing satellites[C]∥Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, London, 2007: 2211-2218.
|
41 |
ZITZLER E, LAUMANNS M, THIELE L. SPEA2: Improving the strength pareto evolutionary algorithm[R]. TIK-report, 2001, 103.
|
42 |
DEB K, SUNDAR J. Reference point based multi-objective optimization using evolutionary algorithms[J] International Journal of Computational Intelligence Research, 2006, 2(3): 273-286.
|
43 |
SAID L B, BECHIKH S, GHÉDIRA K. The R-dominance: A new dominance relation for interactive evolutionary multicriteria decision making[J]. IEEE transactions on Evolutionary Computation,2010,14(5):801-818. DOI: 10.1109/TEVC. 2010.2041060
doi: 10.1109/TEVC. 2010.2041060
|
44 |
MOLINA J, SANTANA L V, HERNÁNDEZ-DÍAZ A G, et al. G-dominance: Reference point based dominance for Mmultiobjective metaheuristics[J]. European Journal of Operational Research, 2009, 197(2): 685-692. DOI: 10.1016/j.ejor.2008.07.015
doi: 10.1016/j.ejor.2008.07.015
|
45 |
THIELE L, MIETTINEN K, KORHONEN P J,et al.A preference-based evolutionary algorithm for multi-objective optimization[J].Evolutionary Computation,2009,17(3):411-436.
|
46 |
BEUME N, NAUJOKS B, EMMERICH M. SMS-EMOA: Multiobjective selection based on dominated hypervolume[J]. European Journal of Operational Research, 2007, 181(3): 1653-1669.
|
47 |
TRAUTMANN H, WAGNER T, BROCKHOFF D. R2-EMOA: focused multiobjective search using R2-indicator-based selection[C]∥International Conference on Learning and Intelligent Optimization, Berlin, 2013: 70-74.
|
48 |
WANG Y, LI L, YANG K, et al. A new approach to target region based multiobjective evolutionary algorithms[C]∥2017 IEEE Congress on Evolutionary Computation (CEC), San Sebastián, 2017: 1757-1764.
|
49 |
LI L, WANG Y, TRAUTMANN H, et al. Multiobjective evolutionary algorithms based on target region preferences[J]. Swarm Evolutionary Computation, 2018, 40: 196-215. DOI: 10.1016/j.swevo.2018.02.006
doi: 10.1016/j.swevo.2018.02.006
|
50 |
LI L, CHEN H, LI J, et al. Preference-based evolutionary many-objective optimization for agile satellite mission planning[J]. IEEE Access, 2018, 6: 40963-40978. DOI: 10.1109/ACCESS.2018.2859028
doi: 10.1109/ACCESS.2018.2859028
|
51 |
XIONG M, XIONG W, LIU C. A hybrid many-objective evolutionary algorithm with region preference for decision makers [J]. IEEE Access, 2019, 7: 117699-117715. DOI: 10.1109/ACCESS.2019.2931742
doi: 10.1109/ACCESS.2019.2931742
|
52 |
XIONG M, XIONG W. A region preference-based optimization algorithm for satellite mission planning problem[C]∥Journal of Physics:Conference Series,Shenzhen,2022: 012035.
|
53 |
XHAFA F, HERRERO X, BAROLLI A,et al. A tabu search algorithm for ground station scheduling problem[C]∥2014 IEEE 28th International Conference on Advanced Information Networking and Applications, Victoria, 2014:1033-1040.
|
54 |
XHAFA F, HERRERO X, BAROLLI A, et al. Evaluation of struggle strategy in genetic algorithms for ground stations scheduling problem[J]. Journal of Computer System Sciences,2013,79(7):1086-1100. DOI:10.1016/j.jcss.2013.01.023
doi: 10.1016/j.jcss.2013.01.023
|
55 |
LALA A, KOLICI V, XHAFA F, et al. On local vs. population-based heuristics for ground station scheduling[C]∥2015 Ninth International Conference on Complex, Intelligent, and Software Intensive Systems, Santa Catarina, 2015: 267-275.
|
56 |
ZHANG Z, XING L, CHEN Y, et al. Evolutionary algorithms for many-objective ground station scheduling problem[C]∥International Conference on Bio-inspired Computing: Theories and Applications, Singapore, 2016: 265-270.
|
57 |
SONG Y J, MA X, LI X J, et al. Learning-guided nondominated sorting genetic algorithm II for multi-objective satellite range scheduling problem[J]. Swarm Evolutionary Computation,2019,49:194-205. DOI:10.1016/j.swevo.2019.06.008
doi: 10.1016/j.swevo.2019.06.008
|
58 |
ZHANG J, XING L, PENG G, et al. A large-scale multiobjective satellite data transmission scheduling algorithm based on SVM+ NSGA-II[J]. Swarm Evolutionary Computation, 2019, 50: 100560. DOI: 10.1016/j.swevo.2019.100560
doi: 10.1016/j.swevo.2019.100560
|
59 |
PETELIN G, ANTONIOU M, PAPA G. Multi-objective approaches to ground station scheduling for optimization of communication with satellits[J]. Optimization and Engineering, 2021: 1-38. DOI: 10.1007/s11081-021-09617-z
doi: 10.1007/s11081-021-09617-z
|
60 |
DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sortinga approach, part I: Solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4): 577-601.
|
61 |
KUKKONEN S, LAMPINEN J. GDE3: The third evolution step of generalized differential evolution[C]∥2005 IEEE Congress on Evolutionary Computation, Edinburgh, 2005: 443-450.
|
62 |
ZITZLER E, KÜNZLI S. Indicator-based selection in multiobjective search[C]∥International Conference on Parallel Problem Solving from Nature, Berlin, 2004: 832-842.
|
63 |
ZHANG Q, LI H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731. DOI: 10.1109/TEVC.2007.892759
doi: 10.1109/TEVC.2007.892759
|
64 |
LIAO Z, GONG W, YAN X, et al. Solving nonlinear equations system with dynamic repulsion-based evolutionary algorithms[J]. IEEE Transactions on Systems, Man, Cybernetics: Systems, 2018, 50(4): 1590-1601. DOI: 10.1109/TSMC.2018.2852798
doi: 10.1109/TSMC.2018.2852798
|
65 |
GONG W, WANG Y, CAI Z, et al. Finding multiple roots of nonlinear equation systems via a repulsion-based adaptive differential evolution[J]. IEEE Transactions on Systems, Man, Cybernetics: Systems, 2018, 50(4): 1499-1513. DOI: 10.1109/TSMC.2018.2828018
doi: 10.1109/TSMC.2018.2828018
|